
SEPARATION LOGIC

Derek Dreyer 
MPI for Software Systems

Cornell/Maryland/Max Planck Summer School  
Saarbrücken, August 2017  

Separation Logic 
in One Slide

• Extension of Hoare logic for reasoning
modularly about pointer-manipulating code

• O’Hearn, Reynolds, et al. (~2000)

• One of the most fundamental advances in
program verification in the past 20 years

• “Concurrent separation logic” (2007) won
the 2016 Gödel Prize (Nobel prize in theory)

• Underpinning of all my recent research

LOGICAL FOUNDATIONS FOR THE FUTURE
OF SAFE SYSTEMS PROGRAMMING

Derek Dreyer
MPI for Software Systems

Cornell/Maryland/MPI Summer School
Saarbrücken, August 2017

RustBelt:

Goal of These Lectures

• Tell you about a major ongoing research
project in PL/verification (RustBelt) 

• Teach you something about a cutting-edge
language (Rust), a cutting-edge separation
logic (Iris), and how they are connected

About Me

• Born in NYC, grew up in Great Neck

• Undergrad in Math/CS at NYU (1993-1996)

• PhD in CS at CMU (1997-2004)

• Postdoc at TTI-Chicago (2005-2007)

• MPI for Software Systems (2008-present)

About Me
• Started out mainly interested in PL design

- Particularly “functional” languages  
(ML, Haskell, etc.)

- PhD thesis and postdoc work on
extensions of the ML module system

• Module systems research was fun, but a bit
lonely, and it was hard to have much impact

About Me
• After coming to MPI-SWS, became more

interested in foundational PL questions:

- How can we verify “real” programs?

- How can we prove safety of “real” PLs? 

• Definition of “real” has changed over time…

- And gotten progressively more “grungy”

About Me

• Born in NYC, grew up on Long Island

• Undergrad in Math/CS at NYU (1993-1996)

• PhD in CS at CMU (1997-2004)

• Postdoc at TTI-Chicago (2005-2007)

• MPI for Software Systems (2008-present)

About Me

• Born in NYC, grew up on Long Island

• Undergrad in Math/CS at NYU (1993-1996)

• PhD in CS at CMU (1997-2004)

• Postdoc at TTI-Chicago (2005-2007)

• MPI for Software Systems (2008-present)

Check out my blog at 
herrdreyer.wordpress.com

The RustBelt Team
@MPI-SWS & UdS

Ralf 
Jung

Derek 
Dreyer

Viktor 
Vafeiadis

@Mozilla

Jeehoon 
Kang

Chung-Kil  
Hur

Niko 
Matsakis

@Aarhus @Seoul Nat. Univ.

Robbert 
Krebbers

Lars 
Birkedal

Jan-Oliver  
Kaiser

David 
Swasey

Hai 
Dang

Jacques-Henri 
Jourdan

Aaron  
Turon

Ori 
Lahav

The RustBelt Team
@MPI-SWS & UdS

Ralf 
Jung

Derek 
Dreyer

Viktor 
Vafeiadis

@Mozilla

Jeehoon 
Kang

Chung-Kil  
Hur

Niko 
Matsakis

@Aarhus @Seoul Nat. Univ.

Robbert 
Krebbers

Lars 
Birkedal

Jan-Oliver  
Kaiser

David 
Swasey

Hai 
Dang

Jacques-Henri 
Jourdan

Aaron  
Turon

Ori 
Lahav

Two new members in July!

Azalea Raad Josh Yanovski

Safety vs. Control

Safety vs. Control

Java 
C# 
Go 

Haskell 
…

high-level 
applications

Safety vs. Control

Java 
C# 
Go 

Haskell 
…

C 
C++ 
…

high-level 
applications

low-level systems  
programming

Safety vs. Control

Java 
C# 
Go 

Haskell 
…

C 
C++ 
…

high-level 
applications

low-level systems  
programming

A safe 
systems  

programming 
language

Rust:

Rust has been developed at Mozilla since 2010
• Mozilla is using Rust to build Servo, a next-gen 

 browser engine with better parallel performance

Rust is the only “systems PL” to provide…
• Low-level control à la modern C++
• Strong safety guarantees
• Industrial development and backing

15 companies using Rust in production
• Dropbox is rewriting block storage engine  

from Go into Rust to control memory footprint

The Future of Safe Systems Programming?

Rust:

Rust has been developed at Mozilla since 2010
• Mozilla is using Rust to build Servo, a next-gen 

 browser engine with better parallel performance

Rust is the only “systems PL” to provide…
• Low-level control à la modern C++
• Strong safety guarantees
• Industrial development and backing

15 companies using Rust in production
• Dropbox is rewriting block storage engine  

from Go into Rust to control memory footprint

The Future of Safe Systems Programming?

Rust has the potential to become the 
“next big thing” in systems programming

Core Idea of Rust

Mutation  
+ 

Aliasing

[0]

x
y z

Core Idea of Rust

[0]

x
y z

[0]

[1]

Core Idea of Rust

[0]

x
y z

[0]

[1]

Core Idea of Rust

dangling

[0]

x
y z

[0]

[1]

Unrestricted mutation and aliasing lead to:
• use-after-free errors (dangling references)
• data races
• iterator invalidation

Core Idea of Rust

dangling

x := 1
y := 2
x := 3

Data Races

x := 1
y := 2
x := 3

x := 1
y := 2
x := 3

Data Races

x := 1
y := 2
x := 3

x := 1
y := 2
x := 3

print y
print x

print y
print x

Data Races

x := 1
y := 2
x := 3

x := 1
y := 2
x := 3

print y
print x

print y
print x
⟶ 2 0

Data Races

x := 1
y := 2
x := 3

x := 1
y := 2
x := 3

print y
print x

print y
print x
⟶ 2 0

⟶ 2 0/

Data Races

x := 1
y := 2
x := 3

x := 1
y := 2
x := 3

print y
print x

print y
print x
⟶ 2 0

⟶ 2 0/

Data Races

Standard compiler optimizations change the
“meaning” of racy concurrent code

x := 1
y := 2
x := 3

x := 1
y := 2
x := 3

print y
print x

print y
print x
⟶ 2 0

⟶ 2 0/

Data Races

Standard compiler optimizations change the
“meaning” of racy concurrent code

Many architectures do, too!

What’s a PL to do?

• Java: Data races Very weak behavior

• C/C++: Data races Undefined behavior

Get used to disappointment.

[0]

x
y z

[0]

[1]

Unrestricted mutation and aliasing lead to:
• use-after-free errors (dangling references)
• data races
• iterator invalidation

Core Idea of Rust

dangling

[0]

x
y z

[0]

[1]

Unrestricted mutation and aliasing lead to:
• use-after-free errors (dangling references)
• data races
• iterator invalidation

Core Idea of Rust

dangling

Rust prevents all these errors using  
a sophisticated “ownership” type system

Ownership & Borrowing

• Having a value of type T means you “own” it fully.

• T can be “borrowed” (e.g. passed by reference):
✦ &T — shared, immutable borrow
✦ &mut T — unique, mutable borrow

Mutation 
+ 

Aliasing

But sometimes you need 
aliased mutable state!

But sometimes you need 
aliased mutable state!

Synchronization mechanisms:
• e.g. Locks, channels, semaphores

Memory management:
• e.g. Reference counting

The Reality of Rust
Mutex

Well-typed application code

Arc

RefCell Channel

…standard libraries…

The Reality of Rust
Mutex

Well-typed application code

Arc

RefCell Channel

…standard libraries…
...
pub fn borrow(&self) -> Ref<T> {
 match BorrowRef::new(&self.borrow) {
 Some(b) => Ref {
 _value: unsafe { &*self.value.get() },
 _borrow: b,
 }, ...
 }
}
...

The Reality of Rust
Mutex

Well-typed application code

Arc

RefCell Channel

…standard libraries…
...
pub fn borrow(&self) -> Ref<T> {
 match BorrowRef::new(&self.borrow) {
 Some(b) => Ref {
 _value: unsafe { &*self.value.get() },
 _borrow: b,
 }, ...
 }
}
...

Claim of Rust library developers:
Unsafe blocks are safely encapsulated 

by their APIs.

Several bugs found in Rust safety so far:

• Due to unsafe blocks in Rust libraries
- e.g. “scoped threads” API

• Due to dark corners of the type system
- e.g. “dropck” rule for checking 

safety of generic destructor methods

Is Rust Safe?

Several bugs found in Rust safety so far:

• Due to unsafe blocks in Rust libraries
- e.g. “scoped threads” API

• Due to dark corners of the type system
- e.g. “dropck” rule for checking 

safety of generic destructor methods

Is Rust Safe?

Several bugs found in Rust safety so far:

• Due to unsafe blocks in Rust libraries
- e.g. “scoped threads” API

• Due to dark corners of the type system
- e.g. “dropck” rule for checking 

safety of generic destructor methods

Is Rust Safe?

Rust is at the bleeding edge of language design
for safe systems programming
• We need formal foundations in order to

build confidence in its safety guarantees!

RustBelt

Goal: Develop 1st logical foundations for Rust

• Use these foundations to verify the safety of  
the Rust core type system and std libraries

• Give Rust developers the tools they need to
safely evolve the language

What is “Safety”?

What is “Safety”?

• Standard “syntactic safety” approach of Wright
and Felleisen (1994) will not work for Rust!
- Requires whole program to be well-typed!

What is “Safety”?

• Standard “syntactic safety” approach of Wright
and Felleisen (1994) will not work for Rust!
- Requires whole program to be well-typed!

• Need to generalize to semantic safety
- A library is semantically safe if no well-typed

application using it can have undefined behavior

Semantic Safety

SET 9↵
1

↵

2

.{set : [= ↵

1

: ⌦],

elem : [= ↵

2

: ⌦],

empty : [↵

1

],

add : [↵

2

⇥ ↵

1

! ↵

1

],

member : [↵

2

⇥ ↵

1

! bool]}

(Elem : ORD) ! (SET where type t = Elem.t)
 8↵.{t : [= ↵ : ⌦],

eq : [↵⇥ ↵ ! bool],
less : [↵⇥ ↵ ! bool]}
! 9�.{set : [= � : ⌦],

elem : [= ↵ : ⌦],

empty : [�],

add : [↵⇥ � ! �],

member : [↵⇥ � ! bool]}

Figure 9. Example: signature elaboration

denoting that S is a signature component whose definition is the
semantic signature {f : [↵ ! int]}.

Note that, by hoisting the binding for the abstract type ↵ to the
outermost scope of the signature, we have made the apparent de-
pendency between the declaration of signature S and the declara-
tion of module A—i.e., the reference in S’s declaration to the type
A.t—disappear! Moreover, whereas in the original syntactic signa-
ture the abstract type was referred to as t in one place and as A.t
in another, in the semantic signature all references to the same ab-
stract type component use the same name (here, ↵). These simplifi-
cations (1) make clear that you do not need dependent types in order
to model ML signatures, and (2) allow us to avoid any “signature
strengthening” (aka “selfification”) machinery, of the sort one finds
in all the “syntactic” type systems for modules [16, 26, 25, 41, 9].

The only semantic signature form not exhibited in the above ex-
ample is the functor signature 8↵.⌃ ! ⌅. The important point
about this signature is that the ↵ are universally quantified, which
enables them to be mentioned both in the argument signature ⌃

and the result signature ⌅. If functor signatures were instead repre-
sented as ⌅ ! ⌅

0, then the result signature ⌅

0 would not be able to
depend on any abstract types declared in the argument.

An example of a functor signature can be seen in Figure 9. It
gives the translations of the signature SET from the example in
Figure 3, along with the translation of the signature

(Elem : ORD) ! (SET where type t = Elem.t)

which classifies the Set functor itself.
Given our informal explanation, the formal rules in Figure 8

should now be very easy to follow. A few points of note, though.
The rule for where type employs a convenient bit of shorthand

notation defined in Figure 7, namely: ⌃.l

X

denotes the signature
of the l

X

component of ⌃. This is used to check that the type
component being refined is in fact an abstract type component (i.e.,
equivalent to one of the ↵ bound existentially by the signature).

In the rule for sequences of declarations D

1

;D
2

, note that the
side condition on the label sets l

X1 and l

X2 is in place because
signatures may not declare two components with the same name.
Also, note that the identifiers X

1

, implicitly embedded as F
!

vari-
ables, may shadow other bindings in �. This is one place where
it is convenient to rely on shadowing being permissible in the F

!

environments.
Finally, the rule for signature paths P refers in its premise to

the path elaboration judgment (which we will discuss later) solely
in order to look up the semantic signature ⌅ that P should expand
to. As noted above in the discussion of atomic signatures, the actual
term e inhabiting the atomic signature [= ⌅] is irrelevant.

Matching � ` ⌃ ⌅ " ⌧ f

� ` ⌧ :

↵

� ` ⌃ ⌃

0
[⌧/↵] f

� ` ⌃ 9↵.⌃

0 " ⌧ f

Subtyping � ` ⌅ ⌅

0 f

� ` ⌧ ⌧

0 f

� ` [⌧] [⌧

0
] �x:[⌧].[f(x.val)]

⌧ ⌘ ⌧

0

� ` [= ⌧ :] [= ⌧

0
:] �x:[= ⌧ :].x

� ` ⌅ ⌅

0 f � ` ⌅

0 ⌅ f

0

� ` [= ⌅] [= ⌅

0
] �x:[= ⌅]. [⌅

0
]

� ` ⌃

1

 ⌃

0
1

 f

� ` {l
1

: ⌃

1

, l

2

: ⌃

2

} {l
1

: ⌃

0
1

}
�x:{l

1

: ⌃

1

, l

2

: ⌃

2

}.{l
1

= f (x.l

1

)}

�, ↵

0 ` ⌃

0 9↵.⌃ " ⌧ f

1

�, ↵

0 ` ⌅[⌧/↵] ⌅

0 f

2

� ` (8↵.⌃ ! ⌅) (8↵0
.⌃

0 ! ⌅

0
)

�f :(8↵.⌃ ! ⌅). �↵

0
. �x:⌃

0
. f

2

(f ⌧ (f

1

x))

�, ↵ ` ⌃ 9↵0
.⌃

0 " ⌧ f

� ` 9↵.⌃ 9↵0
.⌃

0
�x:(9↵.⌃). unpack h↵, yi = x in pack h⌧ , f yi

Figure 10. Signature matching and subtyping

Signature Matching and Subtyping Signature matching (Fig-
ure 10) is a key element of the ML module system. At functor ap-
plications, we must check that the signature of the actual argument
matches the formal argument signature of the functor. For sealed
module expressions, we must check that the signature of the mod-
ule being sealed matches the sealing signature.

What happens during signature matching is really quite sim-
ple. First of all, in all places where signature matching occurs,
the source signature—i.e., the signature of the module being
matched—is expressible as a concrete semantic signature ⌃. (To
see why, skip ahead to module elaboration.) The target signature—
i.e., the signature being matched against—on the other hand is
abstract. To match against an abstract signature 9↵.⌃

0, we must
solve for the ↵. That is, we must find some ⌧ such that the source
signature matches ⌃

0
[⌧/↵]. (Fortunately, if such a ⌧ exists, it is

unique, and there is an easy way of finding it by inspecting ⌃—the
details are in Section 5.2.) Then, the problem of signature match-
ing reduces to the question of whether ⌃ is a subtype of ⌃

0
[⌧/↵],

which can be determined by a straightforward structural analysis
of the two concrete signatures.

As a simple example, consider matching

{A : {t : [= int : ⌦], u : [int], v : [int]}, S : [= {f : [int ! int]}] }

against the abstract signature

9↵.{A : {t : [= ↵ : ⌦], v : [↵]}, S : [= {f : [↵ ! int]}] }

from our signature elaboration example (above). The ⌧ returned by
the matching judgment would here be simply int, and the subtyping
check would determine that the first signature is a width/depth
subtype of the second after substituting int for ↵.

The signature matching judgment has the form � ` ⌃ ⌅ "
⌧ f . It matches a concrete ⌃ against an abstract ⌅ of the form
9↵.⌃

0 as described above, synthesizing the solution ⌧ for ↵, as well
as the coercion f from ⌃ to ⌃

0
[⌧/↵].

5

∀Σ.
∃θ... ⊨

Library 
interface

Safety 
contract

Library 
implementation

semantic
model

logical
satisfaction

Semantic Safety

SET 9↵
1

↵

2

.{set : [= ↵

1

: ⌦],

elem : [= ↵

2

: ⌦],

empty : [↵

1

],

add : [↵

2

⇥ ↵

1

! ↵

1

],

member : [↵

2

⇥ ↵

1

! bool]}

(Elem : ORD) ! (SET where type t = Elem.t)
 8↵.{t : [= ↵ : ⌦],

eq : [↵⇥ ↵ ! bool],
less : [↵⇥ ↵ ! bool]}
! 9�.{set : [= � : ⌦],

elem : [= ↵ : ⌦],

empty : [�],

add : [↵⇥ � ! �],

member : [↵⇥ � ! bool]}

Figure 9. Example: signature elaboration

denoting that S is a signature component whose definition is the
semantic signature {f : [↵ ! int]}.

Note that, by hoisting the binding for the abstract type ↵ to the
outermost scope of the signature, we have made the apparent de-
pendency between the declaration of signature S and the declara-
tion of module A—i.e., the reference in S’s declaration to the type
A.t—disappear! Moreover, whereas in the original syntactic signa-
ture the abstract type was referred to as t in one place and as A.t
in another, in the semantic signature all references to the same ab-
stract type component use the same name (here, ↵). These simplifi-
cations (1) make clear that you do not need dependent types in order
to model ML signatures, and (2) allow us to avoid any “signature
strengthening” (aka “selfification”) machinery, of the sort one finds
in all the “syntactic” type systems for modules [16, 26, 25, 41, 9].

The only semantic signature form not exhibited in the above ex-
ample is the functor signature 8↵.⌃ ! ⌅. The important point
about this signature is that the ↵ are universally quantified, which
enables them to be mentioned both in the argument signature ⌃

and the result signature ⌅. If functor signatures were instead repre-
sented as ⌅ ! ⌅

0, then the result signature ⌅

0 would not be able to
depend on any abstract types declared in the argument.

An example of a functor signature can be seen in Figure 9. It
gives the translations of the signature SET from the example in
Figure 3, along with the translation of the signature

(Elem : ORD) ! (SET where type t = Elem.t)

which classifies the Set functor itself.
Given our informal explanation, the formal rules in Figure 8

should now be very easy to follow. A few points of note, though.
The rule for where type employs a convenient bit of shorthand

notation defined in Figure 7, namely: ⌃.l

X

denotes the signature
of the l

X

component of ⌃. This is used to check that the type
component being refined is in fact an abstract type component (i.e.,
equivalent to one of the ↵ bound existentially by the signature).

In the rule for sequences of declarations D

1

;D
2

, note that the
side condition on the label sets l

X1 and l

X2 is in place because
signatures may not declare two components with the same name.
Also, note that the identifiers X

1

, implicitly embedded as F
!

vari-
ables, may shadow other bindings in �. This is one place where
it is convenient to rely on shadowing being permissible in the F

!

environments.
Finally, the rule for signature paths P refers in its premise to

the path elaboration judgment (which we will discuss later) solely
in order to look up the semantic signature ⌅ that P should expand
to. As noted above in the discussion of atomic signatures, the actual
term e inhabiting the atomic signature [= ⌅] is irrelevant.

Matching � ` ⌃ ⌅ " ⌧ f

� ` ⌧ :

↵

� ` ⌃ ⌃

0
[⌧/↵] f

� ` ⌃ 9↵.⌃

0 " ⌧ f

Subtyping � ` ⌅ ⌅

0 f

� ` ⌧ ⌧

0 f

� ` [⌧] [⌧

0
] �x:[⌧].[f(x.val)]

⌧ ⌘ ⌧

0

� ` [= ⌧ :] [= ⌧

0
:] �x:[= ⌧ :].x

� ` ⌅ ⌅

0 f � ` ⌅

0 ⌅ f

0

� ` [= ⌅] [= ⌅

0
] �x:[= ⌅]. [⌅

0
]

� ` ⌃

1

 ⌃

0
1

 f

� ` {l
1

: ⌃

1

, l

2

: ⌃

2

} {l
1

: ⌃

0
1

}
�x:{l

1

: ⌃

1

, l

2

: ⌃

2

}.{l
1

= f (x.l

1

)}

�, ↵

0 ` ⌃

0 9↵.⌃ " ⌧ f

1

�, ↵

0 ` ⌅[⌧/↵] ⌅

0 f

2

� ` (8↵.⌃ ! ⌅) (8↵0
.⌃

0 ! ⌅

0
)

�f :(8↵.⌃ ! ⌅). �↵

0
. �x:⌃

0
. f

2

(f ⌧ (f

1

x))

�, ↵ ` ⌃ 9↵0
.⌃

0 " ⌧ f

� ` 9↵.⌃ 9↵0
.⌃

0
�x:(9↵.⌃). unpack h↵, yi = x in pack h⌧ , f yi

Figure 10. Signature matching and subtyping

Signature Matching and Subtyping Signature matching (Fig-
ure 10) is a key element of the ML module system. At functor ap-
plications, we must check that the signature of the actual argument
matches the formal argument signature of the functor. For sealed
module expressions, we must check that the signature of the mod-
ule being sealed matches the sealing signature.

What happens during signature matching is really quite sim-
ple. First of all, in all places where signature matching occurs,
the source signature—i.e., the signature of the module being
matched—is expressible as a concrete semantic signature ⌃. (To
see why, skip ahead to module elaboration.) The target signature—
i.e., the signature being matched against—on the other hand is
abstract. To match against an abstract signature 9↵.⌃

0, we must
solve for the ↵. That is, we must find some ⌧ such that the source
signature matches ⌃

0
[⌧/↵]. (Fortunately, if such a ⌧ exists, it is

unique, and there is an easy way of finding it by inspecting ⌃—the
details are in Section 5.2.) Then, the problem of signature match-
ing reduces to the question of whether ⌃ is a subtype of ⌃

0
[⌧/↵],

which can be determined by a straightforward structural analysis
of the two concrete signatures.

As a simple example, consider matching

{A : {t : [= int : ⌦], u : [int], v : [int]}, S : [= {f : [int ! int]}] }

against the abstract signature

9↵.{A : {t : [= ↵ : ⌦], v : [↵]}, S : [= {f : [↵ ! int]}] }

from our signature elaboration example (above). The ⌧ returned by
the matching judgment would here be simply int, and the subtyping
check would determine that the first signature is a width/depth
subtype of the second after substituting int for ↵.

The signature matching judgment has the form � ` ⌃ ⌅ "
⌧ f . It matches a concrete ⌃ against an abstract ⌅ of the form
9↵.⌃

0 as described above, synthesizing the solution ⌧ for ↵, as well
as the coercion f from ⌃ to ⌃

0
[⌧/↵].

5

∀Σ.
∃θ... ⊨

Library 
interface

Safety 
contract

Library 
implementation

semantic
model

logical
satisfaction

Well
typed

Semantic Safety

SET 9↵
1

↵

2

.{set : [= ↵

1

: ⌦],

elem : [= ↵

2

: ⌦],

empty : [↵

1

],

add : [↵

2

⇥ ↵

1

! ↵

1

],

member : [↵

2

⇥ ↵

1

! bool]}

(Elem : ORD) ! (SET where type t = Elem.t)
 8↵.{t : [= ↵ : ⌦],

eq : [↵⇥ ↵ ! bool],
less : [↵⇥ ↵ ! bool]}
! 9�.{set : [= � : ⌦],

elem : [= ↵ : ⌦],

empty : [�],

add : [↵⇥ � ! �],

member : [↵⇥ � ! bool]}

Figure 9. Example: signature elaboration

denoting that S is a signature component whose definition is the
semantic signature {f : [↵ ! int]}.

Note that, by hoisting the binding for the abstract type ↵ to the
outermost scope of the signature, we have made the apparent de-
pendency between the declaration of signature S and the declara-
tion of module A—i.e., the reference in S’s declaration to the type
A.t—disappear! Moreover, whereas in the original syntactic signa-
ture the abstract type was referred to as t in one place and as A.t
in another, in the semantic signature all references to the same ab-
stract type component use the same name (here, ↵). These simplifi-
cations (1) make clear that you do not need dependent types in order
to model ML signatures, and (2) allow us to avoid any “signature
strengthening” (aka “selfification”) machinery, of the sort one finds
in all the “syntactic” type systems for modules [16, 26, 25, 41, 9].

The only semantic signature form not exhibited in the above ex-
ample is the functor signature 8↵.⌃ ! ⌅. The important point
about this signature is that the ↵ are universally quantified, which
enables them to be mentioned both in the argument signature ⌃

and the result signature ⌅. If functor signatures were instead repre-
sented as ⌅ ! ⌅

0, then the result signature ⌅

0 would not be able to
depend on any abstract types declared in the argument.

An example of a functor signature can be seen in Figure 9. It
gives the translations of the signature SET from the example in
Figure 3, along with the translation of the signature

(Elem : ORD) ! (SET where type t = Elem.t)

which classifies the Set functor itself.
Given our informal explanation, the formal rules in Figure 8

should now be very easy to follow. A few points of note, though.
The rule for where type employs a convenient bit of shorthand

notation defined in Figure 7, namely: ⌃.l

X

denotes the signature
of the l

X

component of ⌃. This is used to check that the type
component being refined is in fact an abstract type component (i.e.,
equivalent to one of the ↵ bound existentially by the signature).

In the rule for sequences of declarations D

1

;D
2

, note that the
side condition on the label sets l

X1 and l

X2 is in place because
signatures may not declare two components with the same name.
Also, note that the identifiers X

1

, implicitly embedded as F
!

vari-
ables, may shadow other bindings in �. This is one place where
it is convenient to rely on shadowing being permissible in the F

!

environments.
Finally, the rule for signature paths P refers in its premise to

the path elaboration judgment (which we will discuss later) solely
in order to look up the semantic signature ⌅ that P should expand
to. As noted above in the discussion of atomic signatures, the actual
term e inhabiting the atomic signature [= ⌅] is irrelevant.

Matching � ` ⌃ ⌅ " ⌧ f

� ` ⌧ :

↵

� ` ⌃ ⌃

0
[⌧/↵] f

� ` ⌃ 9↵.⌃

0 " ⌧ f

Subtyping � ` ⌅ ⌅

0 f

� ` ⌧ ⌧

0 f

� ` [⌧] [⌧

0
] �x:[⌧].[f(x.val)]

⌧ ⌘ ⌧

0

� ` [= ⌧ :] [= ⌧

0
:] �x:[= ⌧ :].x

� ` ⌅ ⌅

0 f � ` ⌅

0 ⌅ f

0

� ` [= ⌅] [= ⌅

0
] �x:[= ⌅]. [⌅

0
]

� ` ⌃

1

 ⌃

0
1

 f

� ` {l
1

: ⌃

1

, l

2

: ⌃

2

} {l
1

: ⌃

0
1

}
�x:{l

1

: ⌃

1

, l

2

: ⌃

2

}.{l
1

= f (x.l

1

)}

�, ↵

0 ` ⌃

0 9↵.⌃ " ⌧ f

1

�, ↵

0 ` ⌅[⌧/↵] ⌅

0 f

2

� ` (8↵.⌃ ! ⌅) (8↵0
.⌃

0 ! ⌅

0
)

�f :(8↵.⌃ ! ⌅). �↵

0
. �x:⌃

0
. f

2

(f ⌧ (f

1

x))

�, ↵ ` ⌃ 9↵0
.⌃

0 " ⌧ f

� ` 9↵.⌃ 9↵0
.⌃

0
�x:(9↵.⌃). unpack h↵, yi = x in pack h⌧ , f yi

Figure 10. Signature matching and subtyping

Signature Matching and Subtyping Signature matching (Fig-
ure 10) is a key element of the ML module system. At functor ap-
plications, we must check that the signature of the actual argument
matches the formal argument signature of the functor. For sealed
module expressions, we must check that the signature of the mod-
ule being sealed matches the sealing signature.

What happens during signature matching is really quite sim-
ple. First of all, in all places where signature matching occurs,
the source signature—i.e., the signature of the module being
matched—is expressible as a concrete semantic signature ⌃. (To
see why, skip ahead to module elaboration.) The target signature—
i.e., the signature being matched against—on the other hand is
abstract. To match against an abstract signature 9↵.⌃

0, we must
solve for the ↵. That is, we must find some ⌧ such that the source
signature matches ⌃

0
[⌧/↵]. (Fortunately, if such a ⌧ exists, it is

unique, and there is an easy way of finding it by inspecting ⌃—the
details are in Section 5.2.) Then, the problem of signature match-
ing reduces to the question of whether ⌃ is a subtype of ⌃

0
[⌧/↵],

which can be determined by a straightforward structural analysis
of the two concrete signatures.

As a simple example, consider matching

{A : {t : [= int : ⌦], u : [int], v : [int]}, S : [= {f : [int ! int]}] }

against the abstract signature

9↵.{A : {t : [= ↵ : ⌦], v : [↵]}, S : [= {f : [↵ ! int]}] }

from our signature elaboration example (above). The ⌧ returned by
the matching judgment would here be simply int, and the subtyping
check would determine that the first signature is a width/depth
subtype of the second after substituting int for ↵.

The signature matching judgment has the form � ` ⌃ ⌅ "
⌧ f . It matches a concrete ⌃ against an abstract ⌅ of the form
9↵.⌃

0 as described above, synthesizing the solution ⌧ for ↵, as well
as the coercion f from ⌃ to ⌃

0
[⌧/↵].

5

∀Σ.
∃θ... ⊨

Library 
interface

Safety 
contract

Library 
implementation

semantic
model

logical
satisfaction

?

Semantic Safety
Mutex

Well-typed application code

Arc

RefCell Channel

…standard libraries…

Semantic Safety
Mutex

Well-typed application code

Arc

RefCell Channel

…standard libraries…

Safe by
construction!

Manually
 verified!

Manually
 verified!Manually verified!

Manually verified!

Semantic Safety

SET 9↵
1

↵

2

.{set : [= ↵

1

: ⌦],

elem : [= ↵

2

: ⌦],

empty : [↵

1

],

add : [↵

2

⇥ ↵

1

! ↵

1

],

member : [↵

2

⇥ ↵

1

! bool]}

(Elem : ORD) ! (SET where type t = Elem.t)
 8↵.{t : [= ↵ : ⌦],

eq : [↵⇥ ↵ ! bool],
less : [↵⇥ ↵ ! bool]}
! 9�.{set : [= � : ⌦],

elem : [= ↵ : ⌦],

empty : [�],

add : [↵⇥ � ! �],

member : [↵⇥ � ! bool]}

Figure 9. Example: signature elaboration

denoting that S is a signature component whose definition is the
semantic signature {f : [↵ ! int]}.

Note that, by hoisting the binding for the abstract type ↵ to the
outermost scope of the signature, we have made the apparent de-
pendency between the declaration of signature S and the declara-
tion of module A—i.e., the reference in S’s declaration to the type
A.t—disappear! Moreover, whereas in the original syntactic signa-
ture the abstract type was referred to as t in one place and as A.t
in another, in the semantic signature all references to the same ab-
stract type component use the same name (here, ↵). These simplifi-
cations (1) make clear that you do not need dependent types in order
to model ML signatures, and (2) allow us to avoid any “signature
strengthening” (aka “selfification”) machinery, of the sort one finds
in all the “syntactic” type systems for modules [16, 26, 25, 41, 9].

The only semantic signature form not exhibited in the above ex-
ample is the functor signature 8↵.⌃ ! ⌅. The important point
about this signature is that the ↵ are universally quantified, which
enables them to be mentioned both in the argument signature ⌃

and the result signature ⌅. If functor signatures were instead repre-
sented as ⌅ ! ⌅

0, then the result signature ⌅

0 would not be able to
depend on any abstract types declared in the argument.

An example of a functor signature can be seen in Figure 9. It
gives the translations of the signature SET from the example in
Figure 3, along with the translation of the signature

(Elem : ORD) ! (SET where type t = Elem.t)

which classifies the Set functor itself.
Given our informal explanation, the formal rules in Figure 8

should now be very easy to follow. A few points of note, though.
The rule for where type employs a convenient bit of shorthand

notation defined in Figure 7, namely: ⌃.l

X

denotes the signature
of the l

X

component of ⌃. This is used to check that the type
component being refined is in fact an abstract type component (i.e.,
equivalent to one of the ↵ bound existentially by the signature).

In the rule for sequences of declarations D

1

;D
2

, note that the
side condition on the label sets l

X1 and l

X2 is in place because
signatures may not declare two components with the same name.
Also, note that the identifiers X

1

, implicitly embedded as F
!

vari-
ables, may shadow other bindings in �. This is one place where
it is convenient to rely on shadowing being permissible in the F

!

environments.
Finally, the rule for signature paths P refers in its premise to

the path elaboration judgment (which we will discuss later) solely
in order to look up the semantic signature ⌅ that P should expand
to. As noted above in the discussion of atomic signatures, the actual
term e inhabiting the atomic signature [= ⌅] is irrelevant.

Matching � ` ⌃ ⌅ " ⌧ f

� ` ⌧ :

↵

� ` ⌃ ⌃

0
[⌧/↵] f

� ` ⌃ 9↵.⌃

0 " ⌧ f

Subtyping � ` ⌅ ⌅

0 f

� ` ⌧ ⌧

0 f

� ` [⌧] [⌧

0
] �x:[⌧].[f(x.val)]

⌧ ⌘ ⌧

0

� ` [= ⌧ :] [= ⌧

0
:] �x:[= ⌧ :].x

� ` ⌅ ⌅

0 f � ` ⌅

0 ⌅ f

0

� ` [= ⌅] [= ⌅

0
] �x:[= ⌅]. [⌅

0
]

� ` ⌃

1

 ⌃

0
1

 f

� ` {l
1

: ⌃

1

, l

2

: ⌃

2

} {l
1

: ⌃

0
1

}
�x:{l

1

: ⌃

1

, l

2

: ⌃

2

}.{l
1

= f (x.l

1

)}

�, ↵

0 ` ⌃

0 9↵.⌃ " ⌧ f

1

�, ↵

0 ` ⌅[⌧/↵] ⌅

0 f

2

� ` (8↵.⌃ ! ⌅) (8↵0
.⌃

0 ! ⌅

0
)

�f :(8↵.⌃ ! ⌅). �↵

0
. �x:⌃

0
. f

2

(f ⌧ (f

1

x))

�, ↵ ` ⌃ 9↵0
.⌃

0 " ⌧ f

� ` 9↵.⌃ 9↵0
.⌃

0
�x:(9↵.⌃). unpack h↵, yi = x in pack h⌧ , f yi

Figure 10. Signature matching and subtyping

Signature Matching and Subtyping Signature matching (Fig-
ure 10) is a key element of the ML module system. At functor ap-
plications, we must check that the signature of the actual argument
matches the formal argument signature of the functor. For sealed
module expressions, we must check that the signature of the mod-
ule being sealed matches the sealing signature.

What happens during signature matching is really quite sim-
ple. First of all, in all places where signature matching occurs,
the source signature—i.e., the signature of the module being
matched—is expressible as a concrete semantic signature ⌃. (To
see why, skip ahead to module elaboration.) The target signature—
i.e., the signature being matched against—on the other hand is
abstract. To match against an abstract signature 9↵.⌃

0, we must
solve for the ↵. That is, we must find some ⌧ such that the source
signature matches ⌃

0
[⌧/↵]. (Fortunately, if such a ⌧ exists, it is

unique, and there is an easy way of finding it by inspecting ⌃—the
details are in Section 5.2.) Then, the problem of signature match-
ing reduces to the question of whether ⌃ is a subtype of ⌃

0
[⌧/↵],

which can be determined by a straightforward structural analysis
of the two concrete signatures.

As a simple example, consider matching

{A : {t : [= int : ⌦], u : [int], v : [int]}, S : [= {f : [int ! int]}] }

against the abstract signature

9↵.{A : {t : [= ↵ : ⌦], v : [↵]}, S : [= {f : [↵ ! int]}] }

from our signature elaboration example (above). The ⌧ returned by
the matching judgment would here be simply int, and the subtyping
check would determine that the first signature is a width/depth
subtype of the second after substituting int for ↵.

The signature matching judgment has the form � ` ⌃ ⌅ "
⌧ f . It matches a concrete ⌃ against an abstract ⌅ of the form
9↵.⌃

0 as described above, synthesizing the solution ⌧ for ↵, as well
as the coercion f from ⌃ to ⌃

0
[⌧/↵].

5

∀Σ.
∃θ... ⊨

Library 
interface

Safety 
contract

Library 
implementation

semantic
model

logical
satisfaction

Challenge:
 Verify semantic safety for

Heart of the Problem

∀Σ.
∃θ...

Which logic to use?

Separation 
Logic

to the  
Rescue!

Separation 
Logic

to the  
Rescue!

Extension of Hoare logic (O’Hearn, Reynolds…, ~2000)
• For reasoning about pointer-manipulating programs

Major influence on many verification & analysis tools
• e.g. Infer, VeriFast, Chalice, Bedrock, jStar, …

Separation logic = Ownership logic
• Perfect fit for modeling Rust’s ownership types!

Problem 1: Which One?

Problem 1: Which One?

Concurrent Separation Logic 
[O’Hearn/Brookes, 2007] 

Won the 2016 Gödel Prize!

Problem 1: Which One?

Problem 1: Which One?

Problem 1: Which One?

Problem 2: Memory Model

All these logics assume:
 - sequential consistency 
 for memory accesses

This is totally unrealistic for
high-performance concurrency!
 - e.g. Rust’s Arc library uses 
 C++’s weak memory ops

Towards a Logic for Rust

• Iris [POPL’15, ICFP’16, POPL’17, ESOP’17]:  
Simplifying & unifying modern separation logics  
+ support for machine-checked proof in Coq  

• GPS [OOPSLA’14, PLDI’15, ECOOP’17]:  
First modern sep. logic for C++ memory model

In these lectures…

• Day 1: Ownership types 

• Day 2: Concurrent separation logic  

• Day 3: Introduction to Iris framework  
& how we are using it to verify safety of Rust

In these lectures…

• Day 1: Ownership types in Rust!  

• Day 2: Concurrent separation logic in Coq!  

• Day 3: Introduction to Iris framework  
& how we are using it to verify safety of Rust

Interactive demos!

