SEPARATION LOGIC

Derek Dreyer
MPI for Software Systems
Cornell/Maryland/Max Planck Summer School
Saarbrucken, August 2017

Separation Logic
in One Slide

Extension of Hoare logic for reasoning
modularly about pointer-manipulating code

O’Hearn, Reynolds, et al. (~2000)

One of the most fundamental advances in
program verification in the past 20 years

“Concurrent separation logic” (2007) won
the 2016 Godel Prize (Nobel prize in theory)

Underpinning of all my recent research

7] (9¥/C ﬁrﬁ’
7. 6x/0 ~77

-n~

b - &
%—"—-EF@D /wt_\ ;

»B-?EMF 1:.; q (.T/¢- :
&é“

" Eur uropean

::: erc Research

RUSTBELT:

LOGICAL FOUNDATIONS FOR THE FUTURE
OF SAFE SYSTEMS PROGRAMMING

Derek Dreyer
MPI for Software Systems

Cornell/Maryland/MPI Summer School
Saarbriicken, August 2017

(Goal of These Lectures

e Tell you about a major ongoing research
project in PL/verification (RustBelt)

e Teach you something about a cutting-edge
language (Rust), a cutting-edge separation
logic (Iris), and how they are connected

About Me

Born in NYC, grew up in Great Neck
Undergrad in Math/CS at NYU (1993-1996)
PhD in CS at CMU (1997-2004)

Postdoc at TTI-Chicago (2005-2007)

MPI for Software Systems (2008-present)

About Me

e Started out mainly interested in PL design

- Particularly “functional” languages
(ML, Haskell, etc.)

- PhD thesis and postdoc work on
extensions of the ML module system

e Module systems research was fun, but a bit
lonely, and it was hard to have much impact

About Me

e After coming to MPI-SWS, became more
interested in foundational PL questions:

. (g ¢)» ?
- How can we verify “real” programss?

- How can we prove safety of “real” PLs?

e Definition of “real” has changed over time...

- And gotten progressively more “grungy”

Check out my blog at

=
e,
VU
v
N
v
C
Q.
=
C
©
=
-
9,
>
Q
u
=
C
C
Q
(=

The RUSTBELT Team

@MPI-SWS & UdS

'“l“, e b - AR |
NVt D v
A ot 1

Ralf Jan-Oliver David Hai Jacques-Henri Ori Viktor Derek
Jung Kaiser Swasey Dang Jourdan Lahav Vafeiadis Dreyer

@Mozilla @Aarhus @Seoul Nat. Univ.

e
%5,

Aaron Niko Robbert Lars Jeehoon Chung-Kil
Turon Matsakis Krebbers Birkedal Kang Hur

The RUSTBELT Team

Two new members in July!

Azalea Raad Josh Yanovski

at. Univ.

.

n“,:..

i . S “"’:
' sl

i 0 ‘ "
g, 9 - b . ‘ ‘ 4%
ey - N 4 _ "' ,
‘\j o o > , \ .
M\\ ‘ “ - Y | o \\ f\ :

Niko Robbert Lars Jeehoon Chung-Kil
Matsakis Krebbers Birkedal Kang Hur

Safety vs. Control

Control

Java
C#
Go

Haskell

high-level

applications

Java

C# C
Go C++
Haskell

high-level

applications

low-level systems
programming

Safety vs. Control

; W
DOUNTY HOUNTIRS ATTIHTION!

WARTZD

Java A safe
C# e it
Go systems
Haskell |

programming | B}
language

Rust:

The Future of Safe Systems Programming?

‘ A\ Rust has been developed at Mozilla since 2010

e Mozilla is using Rust to build Servo, a next-gen
browser engine with better parallel performance

Rust is the only “systems PL” to provide...
e Low-level control a la modern C++

e Strong safety guarantees

e Industrial development and backing

15 companies using Rust in production

;‘4: e Dropbox is rewriting block storage engine

Dropbox from Go into Rust to control memory footprint

Rust:

The Future of Safe Systems Programming?

A\ Rust has been developed at Mozilla since 2010

e Mozilla is using Rust to build Servo, a next-gen
browser engine with better parallel performance

Rust has the potential to become the
“next big thing” in systems programming

-~ e Dropbox is rewriting block storage engine
Dropbox from Go into Rust to control memory footprint

Core Idea of Rust

Core Idea of Rust

“\
ECE

Core Idea of Rust

Core Idea of Rust

Core Idea of Rust

y Z

X \ \

Unrestricted mutation and aliasing lead to:

e use-after-free errors (dangling references)
e data races

@ iterator invalidation

X < X

Data Races

1
2
3

X < X

E e en s

X <

Data Races

1
2
3

W N

X < X

X <

Data Races

=1 print vy
1= 2 print Xx
= 3
print vy
print Xx

W N

X < X

E e en s

X <

Data Races

W N

1
2
3

print vy
print Xx

print vy
print Xx
— 2 0

X < X

E e en s

X <

Data Races

W N

1
2
3

print vy
print Xx

—- 20

print vy
print Xx
— 2 0

Data Races

X .
Y .

1 print vy
2 print X

Standard compiler optimizations change the
“meaning” of racy concurrent code

Data Races

X 1= 1 | brint v
Y i Many architectures do, too!

Standard co_

“meaning” of racy concurrent code

What’s a PL to do?

Get used to disappointment.

e Java: Data races - Very weak behavior

e C/C++: Data races - Undefined behavior

Core Idea of Rust

e N
B

Unrestricted mutation and aliasing lead to:

e use-after-free errors (dangling references)
e data races

@ iterator invalidation

Core Idea of Rust

e N
S

Rust prevents all these errors using

a sophisticated “ownership” type system

Ownership & Borrowing

e Having a value of type T means you “own” it fully.

® T can be “borrowed” (e.g. passed by reference):
+ &T — shared, immutable borrow

+ &mut T — unique, mutable borrow

But sometimes you need
aliased mutable state!

But sometimes you need
aliased mutable state!

Synchronization mechanisms:
e c.g. Locks, channels, semaphores

Memory management:
e c.g. Reference counting

The Reality of Rust

Arc ...standard libraries... Mutex
& ‘

WVell-typed application code

RefCell Channel

The Reality of Rust

...standard libraries...

pub fn borrow(&self) —> Ref<T> {
match BorrowRef::new(&self.borrow) {
Some(b) => Ref {
_value: unsafe { &xself.value.get() },
_borrow: b,

The Reality of Rust
Arc ...standard libraries. .. Mutex
(«/\H

Claim of Rust library developers:

Unsafe blocks are safely encapsulated
by their APIs.

&/

Is Rust Safe?

Several bugs found in Rust safety so far:

@

e Due to unsafe blocks in Rust libraries
- e.g. “scoped threads” API %
e Due to dark corners of the type system
- e.g. “dropck” rule for checking
safety of generic destructor methods

Is Rust Safe?

Goc \ @ The \ G idio \. The “‘\ @ The \ € Fro « [§ Sun \ﬂ Fac \ New T. \ Jan \ New T \m Min \ E) \ [7 Ricl \ New T \\Xﬂ

-abeinges/blah/everyone-poops/

ome |%] Bookmarks [7 SWS Wiki En -> De De->En [=] budget2015 & Types-announce 20 +| Parametricity Lectur
& g y y

Pre-Pooping Your Pants With Rust
Alexis Beingessner - April 27, 2015

Leakpocalypse

Much existential anguish and ennui was recently triggered by Rust Issue #24292: std::thread::JoinGuard (and scoped) are
unsound because of reference cycles. If you feel like you're sufficiently familiar with Leakpocalypse 2k15, feel free to skip
to the next section. If you've been thoroughly stalking all my online interactions, then you've basically seen everything in
this post already. Feel free to close this tab and return to scanning my IRC logs.

The issue in question states:

You can use a reference cycle to leak a JoinGuard and then the scoped thread can access freed
memory

This is a very serious claim, since all the relevant APIs are marked as safe, and a use-after-free is something that should be
impossible for safe code to perform.

The main focus is on the thread::scoped API which spawns a thread that can safely access the contents of another

thread's stack frame in a statically guaranteed way. The basic idea idea is that thread: :scoped returns a JoinGuard type.

JoinGuard's destructor blocks on the thread joining, and isn't allowed to outlive any of the things that were passed into
thread: :scoped . This enables really nice things like:

Is Rust Safe?

Goc { & The (Gidio ([the { & The { & Fro ([N sun (EdFac (NewT: (EJJan (NewT (P¥Min (B 12 ([Rict { NewT: (W1

-abeinges/blah/everyone-poops/
ome L‘i_-] Bookmarks D SWS Wiki Q(En -> De &(De -> En budget2015 ﬁ Types-announce 20 L‘i_-] Parametricity Lectur

Rust is at the bleeding edge of language design
for safe systems programming

e We need formal foundations in order to
build confidence in its safety guarantees!

NDOSSID/Ie TOr sarte coae 10 perrorm.

The main focus is on the thread::scoped API which spawns a thread that can safely access the contents of another

thread's stack frame in a statically guaranteed way. The basic idea idea is that thread: :scoped returns a JoinGuard type.

JoinGuard's destructor blocks on the thread joining, and isn't allowed to outlive any of the things that were passed into
thread: :scoped . This enables really nice things like:

RUSTBELT

Goal: Develop 15t logical foundations for Rust

e Use these foundations to verity the safety of
the Rust core type system and std libraries

e Give Rust developers the tools they need to
safely evolve the language

What is “Safety”?

What is “Safety”?

e Standard “syntactic safety” approach of Wright
and Felleisen (1994) will not work for Rust!

- Requires whole program to be well-typed!

What is “Safety”?

e Standard “syntactic safety” approach of Wright
and Felleisen (1994) will not work for Rust!

- Requires whole program to be well-typed!

e Need to generalize to semantic safety

- A library is semantically safe if no well-typed
application using it can have undefined behavior

Semantic Safety

W #
semantic logical
model satisfaction
Library Safety Library

interface contract implementation

Semantic Safety

v

; Well
semantic logical typed
model satisfaction
Library Safety Library

interface contract implementation

Semantic Safety

W #
semantic logical
model satisfaction
Library Safety Library

interface contract implementation

Semantic Safety

...standard libraries... Mutex
‘

Well-typed application code

Channel

Semantic Safety

Semantic Safety

N =
semantic logical
model satisfaction
Library Safety Library
interface contract implementation
Challenge:

Verify semantic safety for @

Heart of the Problem

Which logic to use?

to the
Rescue!

Separation #“ (o the

\

Logic : - Rescue!

Extension of Hoare logic (O’Hearn, Reynolds..., ~2000)
e For reasoning about pointer-manipulating programs

Major influence on many verification & analysis tools
e c.g. Infer, VeriFast, Chalice, Bedrock, jStar, ...

Separation logic = Ownership logic
e Perfect fit for modeling Rust’s ownership types!

. 4

Problem 1: Which One?

w 1 D L =3 =1 [= R L =3 = N

[S TWO-DISC SPECIAL EDITION
CHRISTOPHER RE - CHRISTOPHER REEVE RICHARD PRYOR

| —

BATMAN ¥ SUPERMAN

D W o » J OV YICD)

Problem 1: Which One?
A

CHUTOPHER REEVE - GE\E HACKIVIAN

\
s : |
o g

DY
M i 2

qg‘—“

\) - '".. 8. 41" WHeay ”y |
Concurrent Separation Logic &
|[O’Hearn/Brookes, 2007

Problem 1: Which One?

w 1 D L =3 =1 [= R L =3 = N

[S TWO-DISC SPECIAL EDITION
CHRISTOPHER RE - CHRISTOPHER REEVE RICHARD PRYOR

| —

BATMAN ¥ SUPERMAN

D W o » J OV YICD)

Problem 1: Which One?

- — W | D € S €C R € € N AT

The Next 700 Separation Logics
(Invited Paper)

Matthew Parkinson

Microsoft Research Cambridee
o

Abstract. In recent years, separation logic has brought great advances

in the world of verification. However, there is a disturbing trend for each
new library or concurrency primitive to require a new separation logic.
[will argue that we shouldn’t be inventing new separation logics, but

should find the right logic to reason about interference, and have a pow-
erful abstraction mechanism to enable the library’s implementation de-
tails to be correctly abstracted. Adding new concurrency libraries should
simply be a matter of verification, not of new logics or metatheory.

Landin’s seminal paper, The Next 700 Programming Languages [33|, opens with:

Most programming languages are partly a way of expressing things in
terms of other things and partly a basic set of given things.

Problem 1: Which One?

A e Wt b w8 _c s e AL NOT~Y (D O

The Next 700 Separation Logics
(Invited Paper)

Matthew Parkinson

Microsoft Research Cambridge

varation logic has broug

Abstract. In recent years, se ht great advances

in the world of verification.

However, there is a disturbing trend for each
new library or concurrency primitive to require a new separation logic.
wi

argue that we shouldn t be mventing new separation logics, but
should find the right logic to reason about interference, and have a pow-
erful abstraction mechanism to enable the library’s implementation de-
tails to be correctly abstracted. Adding new concurrency libraries should

simply be a matter of verification, not of new logics or metatheory.

Landin’s seminal paper, The Next 700 Programming Languages [33|, opens with:

Most programming languages are partly a way of expressing things in
terms of other things and partly a basic set of given things.

Problem 2: Memory Model

All these logics assume:
- sequential consistency
for memory accesses

This is totally unrealistic for
high-performance concurrency!
- e.g. Rust's Arc library uses
C++’s weak memory ops

Towards a Logic for Rust

e Iris [POPL15, ICFP’16, POPL17, ESOP’17]:
Simplifying & unifying modern separation logics
+ support for machine-checked proof in Coq

e GPS [00PSLA14, PLDI'15, ECOOP’17]:
First modern sep. logic for C++ memory model

In these lectures...

e Day 1: Ownership types

e Day 2: Concurrent separation logic

e Day 3: Introduction to Iris framework
& how we are using it to verify safety of Rust

In these lectures &

e Day 1: Ownership types in Rust!

e Day 2: Concurrent ’aration logic in Coq!

e Da Interactive demos! g,k

& h safety of Rust

