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What is this course about?

Machine learning studies algorithms for 
learning to do stuff

• By finding (and exploiting) patterns in 
data

• Sometimes in ways we’d rather they didn’t

• Theory helps us understand this!



What can we do 
with machine learning?

Analyze genomics data

Recognize objects
in images

Analyze text & speech

Teach robots how to 
cook from youtube 
videos



Question Answering 
system beats Jeopardy 
champion Ken Jennings at 
Quiz bowl!

Sometimes machines even 
perform better than humans!



Machine Learning 

• Paradigm: “Programming by example”
– Replace ``human writing code'' with ``human 

supplying data''

• Most central issue: generalization
– How to abstract from ``training'' examples to ``test'' 

examples?



A growing and fast moving field

• Broad applicability
– Finance, robotics, vision, machine translation, 

medicine, etc.

• Close connection between theory and 
practice

• Open field, lots of room for new work!



Course Goals
• By the end of the week, you should be able to

– Frame simple problems as ML problems (if appropriate)
– Understand when generalization is and isn’t possible
– Find many examples in the real world of systems that 

do not generalize well and explain why
– Have access to tools for building your own ML 

solutions to problems

• This course is not
– A survey of ML algorithms
– A tutorial on ML toolkits such as Weka, TensorFlow, …



Topics
Today: Foundations of Supervised Learning
•Inductive bias and generalization
•Linear models and gradient descent
•Overfitting and the bias/variance trade-off

Next: Bias in Machine Learning 
•Neural networks
•Machine learning replicates human biases
•Sample selection bias and solutions 

Finally: Somewhat up in the air
•Attacking machine learning systems & defending them
•Bias in language reflected in learned systems
•Understanding the behavior of learned systems
•Building learning systems, beyond differentiability

Please vote on this
by the end of today

go.umd.edu/mlvote



Who am I and how did I get here?
● Grew up in LA, parents both did marketing research
● High school

– math, Latin, programming
– new goal in life: HS math teacher

● College
– discrete math & creative writing, then Chris Quirk at LTI
– new goal in life: teach undergrads math

● Grad school
– CS, natural language processing … wait, but math!
– machine learning “revolution”
– new goal in life: teach grad students

● Nowadays

– new goal in life: teach computers



I’m a real person too….



Today’s topics

What does it mean to “learn by example”?

• Classification tasks

• Inductive bias

• Formalizing learning



Typical Design Process
 for an ML Application



Classification tasks

• How would you write a program to 
distinguish a picture of me from a picture 
of someone else?

• Provide examples pictures of me and 
pictures of other people and let a 
classifier learn to distinguish the two.



Classification tasks

• How would you write a program to 
distinguish a sentence is grammatical or 
not?

• Provide examples of grammatical and 
ungrammatical sentences and let a 
classifier learn to distinguish the two.



Classification tasks

• How would you write a program to 
distinguish cancerous cells from normal 
cells?

• Provide examples of cancerous and 
normal cells and let a classifier learn to 
distinguish the two.



Classification tasks

• How would you write a program to 
distinguish cancerous cells from normal 
cells?

• Provide examples of cancerous and 
normal cells and let a classifier learn to 
distinguish the two.



Let’s try it out…

 Your task: learn a classifier to distinguish 
class A from class B from examples



• Examples of class A:



• Examples of class B



Let’s try it out…

 learn a classifier from examples

 Now: predict class on new examples using 
what you’ve learned















Key ingredients 
needed for learning

• Training vs. test examples
– Memorizing the training examples is not enough!
– Need to generalize to make good predictions on test 

examples

• Inductive bias
– Many classifier hypotheses are plausible
– Need assumptions about the nature of the relation 

between examples and classes



What if I told you…



Machine Learning 
as Function Approximation

•  



Formalizing induction:
Loss Function

•  



Formalizing induction:
Data generating distribution

•  



Formalizing induction:
Expected loss

•  



Formalizing induction:
Training error

•  

 



Formalizing Induction

•  



Recap: introducing 
machine learning

What does “learning by example” mean?

• Classification tasks

• Learning requires examples + inductive bias
• Generalization vs. memorization

• Formalizing the learning problem
– Function approximation
– Learning as minimizing expected loss



Typical Design Process
 for an ML Application



Topics

• Linear Models
– Loss functions
– Regularization

• Gradient Descent
• Calculus refresher

– Convexity
– Gradients



Geometry concept: Hyperplane

• Separates a D-dimensional 
space into two half-spaces

• Defined by an outward 
pointing normal vector 
–  is orthogonal to any vector 

lying on the hyperplane

• Hyperplane passes through 
the origin, unless we also 
define a bias term b



Binary classification
via hyperplanes

•  



What real data looks like…
1 robocop is an intelligent science fiction thriller and 
social satire , one with class and style .  the film , 
set in old detroit in the year 1991 , stars peter weller 
as murphy , a lieutenant on the city's police force .  
1991's detroit suffers from rampant crime and a police 
department run by a private contractor ( security 
concepts inc . ) whose employees ( the cops ) are 
threatening to strike .  to make matters worse , a savage 
group of cop-killers has been terrorizing the city . […]
0 do the folks at disney have no common decency ?  they 
have resurrected yet another cartoon and turned it into a 
live action hodgepodge of expensive special effects , 
embarrassing writing and kid-friendly slapstick .  wasn't 
mr . magoo enough , people ?  obviously not .  inspector 
gadget is not what i would call ideal family 
entertainment .  […]

Class y
Example

How would you define input 
vectors x to represent each 

example? What features would 
you use?





Learning a Linear Classifier
 as an Optimization Problem

Indicator function: 1 if (.) is true, 0 otherwise
The loss function above is called the 0-1 loss

Loss function
measures how well 

classifier fits training 
data

Regularizer
prefers solutions 
that generalize 

well

Objective 
function



The 0-1 Loss

• Small changes in w,b can lead to big 
changes in the loss value

• 0-1 loss is non-smooth, non-convex



Calculus refresher:
Smooth functions, convex functions



Approximating the 0-1 loss with 
surrogate loss functions

• Examples (with b = 0)
– Hinge loss
– Log loss
– Exponential loss

• All are convex upper-
bounds on the 0-1 
loss



Casting Linear Classification
 as an Optimization Problem

Indicator function: 1 if (.) is true, 0 otherwise
The loss function above is called the 0-1 loss

Loss function
measures how well 

classifier fits training 
data

Regularizer
prefers solutions 
that generalize 

well

Objective 
function



The regularizer term
• Goal: find simple solutions  (inductive bias)

• Ideally, we want most entries of w to be zero, so 
prediction depends only on a small number of 
features.

• Formally, we want to minimize:

• That’s NP-hard, so we use approximations instead. 
– E.g., we encourage wd’s to be small



Norm-based Regularizers

•  

Contour
plots for p = 2       p = 1 p < 1



Casting Linear Classification
 as an Optimization Problem

Indicator function: 1 if (.) is true, 0 otherwise
The loss function above is called the 0-1 loss

Loss function
measures how well 

classifier fits training 
data

Regularizer
prefers solutions 
that generalize 

well

Objective 
function



Illustrating gradient descent
 in 1-dimensional case



Gradient descent algorithm
Objective function 

to minimize
Number of steps Step size



Recap: Linear Models

• General framework for binary classification
• Cast learning as optimization problem
• Optimization objective combines 2 terms

– loss function: measures how well classifier fits 
training data 

– Regularizer: measures how simple classifier is
• Does not assume data is linearly separable
• Lets us separate model definition from 

training algorithm



Overfitting

• Consider a hypothesis h and its:
– Error rate over training data 
– True error rate over all data 

• We say h overfits the training data if
         Training error << Test error

• Amount of overfitting =
          Test error – Training error



Evaluating on test data

•  

model, called h,



Measuring effect of overfitting
 in linear models

Lots ←        Amount of Regularization        → Very Little



Underfitting/Overfitting
• Underfitting

– Learning algorithm had the opportunity to learn more 
from training data, but didn’t

• Overfitting
– Learning algorithm paid too much attention to 

idiosyncracies of the training data; the resulting tree 
doesn’t generalize

• What we want:
– A decision tree that neither underfits nor overfits
– Because it is is expected to do best in the future



Formalizing Errors
The learned 

classifier
        set of all possible classifiers 

using a fixed representation

How far is the learned 
classifier f from the optimal 

classifier f*?

Quality of the model 
family

aka hypothesis class



The bias/variance trade-off

• Trade-off between
– approximation error (bias)
– estimation error (variance)

• Example:
– Consider the always positive classifier

• Low variance as a function of a random draw of the 
training set

• Strongly biased toward predicting +1 no matter 
what the input
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Typical Design Process
 for an ML Application



Your homework assignments

• Let me know (go.umd.edu/mlvote):
– what your interests are
– what I’m doing well/poorly

• Pick some task (ideally a
“social good” problem)

– reformulate as much
of ML workflow as you
can to that problem →

– (fig 2.4, ciml.info)
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