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What is this course about?

Machine learning studies algorithms for
learning to do stuft

By finding (and exploiting) patterns in
data

* Sometimes in ways we'd rather they didn't

* Theory helps us understand this!
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Sometimes machines even
perform better than humans!
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Question Answering
system beats Jeopardy
champion Ken Jennings at
Quiz bowl!



Machine Learning

* Paradigm: "Programming by example”
— Replace "human writing code" with "human
supplying data"

* Most central issue: generalization

— How to abstract from training' examples to test"
examples?



A growing and fast moving fielo

* Broad applicability

— Finance, robotics, vision, machine translation,
medicine, etc.

* Close connection between theory and
practice

* Open field, lots of room for new work!



Course Goals

* By the end of the week, you should be able to
— Frame simple problems as ML problems (if appropriate)
— Understand when generalization is and isn't possible

— Find many examples in the real world of systems that
do not generalize well and explain why

— Have access to tools for building your own ML
solutions to problems

* This course is not
— A survey of ML algorithms
— A tutorial on ML toolkits such as Weka, TensorFlow, ...



lopics

Today: Foundations of Supervised Learning
*Inductive bias and generalization

*Linear models and gradient descent
*Overfitting and the bias/variance trade-off

Next: Bias in Machine Learning
*Neural networks

*Machine learning replicates human biases
*Sample selection bias and solutions

" Please vote on this
by the end of today

//// 20, und. edu/mlvote

inally: Somewhat up in the air _
*Attacking machine learning systems & defending them
*Bias in language reflected in learned systems
*Understanding the behavior of learned systems
*Building learning systems, beyond differentiability




Who am I and how did I get here?

* Grew up in LA, parents both did marketing research
* High school

— math, Latin, programming

— new goal in life: HS math teacher

College
— discrete math & creative writing, then Chris Quirk at LTI
— new goal in life: teach undergrads math

* Grad school

— CS, natural language processing ... wait, but math!
— machine learning “revolution”
— new goal in life: teach grad students

how can we get computers to learn language
through natural interaction with people/users?

how can we do this 1n a way that promotes fairness,
transparency and explainability 1n the learned models?




['m a real person too....




Today's topics

What does it mean to “learn by example”?
* Classification tasks
* Inductive bias

* Formalizing learning



Typica
for an

real
world
goal

increase
revenue

i_l

rW.
mech-
anism

better
ad

display

¢r2

learning
problem

classify
click-
through

¢:3

data
collect
mech

interact
w/ cur
system

| 4

'8

training
data
selection

subset
from
apr'l6

v

Design Process
ML Application

i

model
training
(+hps)

final
decision
tree

hypoth. dec. tree

class/
ind. bias

depth
20

isa

t

predict
on test
data

subset
from
may 'l 6

data
repres
entation

bow?,
+- click

‘10

t

evaluate
error

AUC for
+- click
predict'n

collected
data

query,
d

L]
click

A

‘ill

Deploy!




Classification tasks

* How would you write a program to
distinguish a picture of me from a picture

of someone else?

* Provide examples pictures of me and
pictures of other people and let a
classifier learn to distinguish the two.



Classification tasks

* How would you write a program to
distinguish a sentence i1s grammatical or

not?

* Provide examples of grammatical and
ungrammatical sentences and let a
classifier learn to distinguish the two.



Classification tasks

* How would you write a program to
distinguish cancerous cells from normal
cells?

* Provide examples of cancerous and
normal cells and let a classifier learn to
distinguish the two.



Classification tasks

* How would you write a program to
distinguish cancerous cells from normal
cells?

* Provide examples of cancerous and
normal cells and let a classifier learn to
distinguish the two.



Let's try it out...

" Your task: learn a classifier to distinguish
class A from class B from examples



* Examples of class A:




* Examples of class B




Let's try it out...

v’ learn a classifier from examples

" Now: predict class on new examples using
what you've learned





















Key ingredients
needed for learning

* Training vs. test examples
— Memorizing the training examples is not enough!

— Need to generalize to make good predictions on test
examples

* Inductive bias
— Many classifier hypotheses are plausible

— Need assumptions about the nature of the relation
between examples and classes



What it [ told you...
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Machine Learning
as Function Approximation

Problem setting

« Set of possible instances X

* Unknown target function f: X - Y

« Set of function hypotheses H ={h | h: X — Y}

Input

- Training examples {(x®,y D), . (x®™), y®™))} of unknown
target function f

Output
» Hypothesis h € H that best approximates target function f



Formalizing induction:
LOss Function

[(y, f(x)) where y is the truth and f(x) is the
system’s prediction

ot = [0 3210

1 otherwise

Captures our notion of what is important to learn



Formalizing induction:
Data generating distribution

 Where does the data come from?

— Data generating distribution
* A probability distribution D over (x,y) pairs

— We don't know what D is!

« We only get a random sample from it: our training
data



Formalizing induction:
Expected loss

 f should make good predictions
— as measured by loss [
— on future examples that are also drawn from D

* Formally

— ¢, the expected loss of f over D with respect to [ should
be small

2 Byl fC} = ) DGO, ()

(x,y)



Formalizing induction:
Training error

« We can't compute expected loss because we
don't know what D is

« We only have a sample of D
— training examples {(x™W),y W), ... (x™),y(V))}

* All we can compute is the training error

N
1
g2 ) SUE™, Fx™))
n=1



Formalizing Induction

*s Glven
— a loss function [
— a sample from some unknown data distribution D

» Qur task is to compute a function f that has
low expected error over D with respect to L.

Eieyy-oll0 fON} = ) DE&IO,f()

(x,y)



Recap: introducing
machine learning

What does “learning by example” mean?

* Classification tasks

* Learning requires examples + inductive bias
 Generalization vs. memorization

* Formalizing the learning problem
— Function approximation
— Learning as minimizing expected loss
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Topics

* Linear Models
— Loss functions
— Regularization

 Gradient Descent

* Calculus refresher

— Convexity
— Gradients



Geometry concept: Hyperplane

* Separates a D-dimensional
space into two half-spaces

w * Defined by an outward
pointing normal vector

— is orthogonal to any vector
2 lying on the hyperplane

* Hyperplane passes through
the origin, unless we also
define a bias term b



Binary classification
via hyperplanes

* A classifier is a hyperplane (w,b)

» At test time, we check on what
side of the hyperplane

examples fall
y =sign(wx + b)

 This is a linear classifier

— Because the prediction is a linear
combination of feature values x



m What real data looks like.

1 robocop is an intelligent science fiction thriller and

social satire , one with class and style . the film ,
set in old detr01t in the year 1991 s stars peter weller
as murphy - - e force .
1991's de a police
rtmen 1
Siﬁiepti How would you define input ;:}e/
threateni vectors x to represent each e, a savage
LI cxample? What features would [kt
© do the y ? they
have resu you use? od it into a
live acti fects ,
embarrassTmng D k . wasn't
mr . magoo enough , people ? obviously not . 1inspector

gadget is not what i would call ideal family
entertainment . [..]



TASK: BINARY CLASSIFICATION

Given:

1. An input space &
2. An unknown distribution D over X'x{—1,+1}

Compute: A function f minimizing: E, ) p f(x) #y]
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The 0-1 Loss

(00) y(wx +b)

* Small changes in w,b can lead to big
changes in the loss value

* 0-1 loss is non-smooth, non-convex



Calculus refresher:
Smooth functions, convex functions



Approximating the 0-1 loss with
surrogate loss functions

* Examples (with b = 0)
—Hinge loss [1 — y.w
—Log loss  log[l + exp(—y.w'x,)]
— Exponential loss  exp(—y,w ' x,)

- max{O, 1— y.w'x,}

* All are convex upper- uwzz_'
bounds on the 0-1
loss
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The reqgularizer term

Goal: find simple solutions (inductive bias)

Ideally, we want most entries of w to be zero, so
prediction depends only on a small number of
features.

Formally, we want to minimize:
D

I[(Wd 75 O)

d—1

cht(W, b)

That's NP-hard, so we use approximations instead.
— E.g., we encourage w,'s to be small



Norm-based Regularizers

* [, norms can be used as regularlzers
w 2 — Zd 1 Wd

Wil1 = Zdzl Lzl

Wilp = (25:1 Wg)l/p

w2 w2 w2

an AT }
Bl Nl

plots for p =2 p=1 p<l1l
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[llustrating gradient descent
in 1-dimensional case
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Gradient descent algorithm

Objective function
to minimize

Number of steps ] Step size ]

Algorithm 22 GRADIENTDESCENT(F, K /iVEEE

: 20 « (0,0,...,0) // initialize variable we are optimizing
= fork=1...Kdo

s g™« Vo F|un /| compute gradient at current location
¢ 2l D gk // take a step down the gradient

s end for
e« return zK




Recap: Linear Models

* General framework for binary classification
* Cast learning as optimization problem

* Optimization objective combines 2 terms

— loss function: measures how well classifier fits
training data

— Regularizer: measures how simple classifier is
* Does not assume data is linearly separable

* Lets us separate model definition from
training algorithm




Overtitting

* Consider a hypothesis h and its:
— Error rate over training data
— True error rate over all data

* We say h overfits the training data if
Training error << Test error

* Amount of overfitting =
Test error — Training error



Fvaluating on test data

*» Problem: we don't know errory,,.(h)!

» Solution:

— we set aside a test set
« some examples that will be used for evaluation
— we don't look at them during training!

— after learning a model, called h,we calculate
errories:(h)



Accuracy

Measuring effect of overfitting
in linear models

0.9
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053 F

0.3

Lots « Amount of Regularization - Very Little



Underfitting/Overfitting

* Underfitting

— Learning algorithm had the opportunity to learn more
from training data, but didn't

* Overfitting

— Learning algorithm paid too much attention to
idiosyncracies of the training data; the resulting tree
doesn’t generalize

* What we want:
— A decision tree that neither underfits nor overfits
— Because it is is expected to do best in the future



Formalizing Errors
4 )

The learned set of all possible classifiers
classifier -Fsing a fixed representation

1

error(f) = [error(f) _ min error(f*)] 4+ [min error(f)]

freF freF
gy o Yy "
W W
estimation error approximation error

Quality of the model
family
aka hypothesis class

How far is the learned
classifier f from the optimal
classifier f*?



The bias/variance trade-off

* Trade-off between
— approximation error (bias)
— estimation error (variance)

* Example:

— Consider the always positive classifier

* Low variance as a function of a random draw of the
training set

* Strongly biased toward predicting +1 no matter
what the input



Source; elitedatascience.com

Ok, let's do a thought experiment...
Imagine you've collected 5 different training datasets 9
o

for the same problem. Now, imagine using on
algorithm to train 5 models

Here's what those 5 models tell you
about your chosen algorithm:

High Bias High Variance
Low Variance Low Bias

High bias, low variance High variance, low bias
algorithms train models that algorithms train models that
are consistent, but inaccurate are accurate on average, but

on average. inconsistent.
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Your homework assignments

* Let me know (go.umd.edu/mlvote):

- what your interests are

- what I'm doing well/poorly

* Pick some task (ideally a
“social good” problem)

- reformulate as much
of ML workflow as you
can to that problem —

- (fig 2.4, ciml.info)
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