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What is this course about?

Machine learning studies algorithms for
learning to do stuft

By finding (and exploiting) patterns in
data

* Sometimes in ways we'd rather they didn't

* Theory helps us understand this!



Last time....

What does it mean to learn?
Inductive bias
Linear models

Overfitting & underfitting



Formalizing Induction

*s Glven
— a loss function [
— a sample from some unknown data distribution D

» Qur task is to compute a function f that has
low expected error over D with respect to L.
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Overtitting

* Consider a hypothesis h and its:
— Error rate over training data
— True error rate over all data

* We say h overfits the training data if
Training error << Test error

* Amount of overfitting =
Test error — Training error



Accuracy

Measuring effect of overfitting
in linear models
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Formalizing Errors
4 )

The learned set of all possible classifiers
classifier -Fsing a fixed representation

1

error(f) = [error(f) _ min error(f*)] 4+ [min error(f)]

freF freF
gy o Yy "
W W
estimation error approximation error

Quality of the model
family
aka hypothesis class

How far is the learned
classifier f from the optimal
classifier f*?



The bias/variance trade-off

* Trade-off between
— approximation error (bias)
— estimation error (variance)

* Example:

— Consider the learning algorithm that always
returns the "always positive classifier”

* Low variance as a function of a random draw of the
training set

* Strongly biased toward predicting +1 no matter
what the input



Source; elitedatascience.com

Ok, let's do a thought experiment...
Imagine you've collected 5 different training datasets 9
o

for the same problem. Now, imagine using on
algorithm to train 5 models

Here's what those 5 models tell you
about your chosen algorithm:

High Bias High Variance
Low Variance Low Bias

High bias, low variance High variance, low bias
algorithms train models that algorithms train models that
are consistent, but inaccurate are accurate on average, but

on average. inconsistent.



Today...

* Quantifying what can and cannot be learned
- No free lunch

- VC dimension
* What are our core assumptions / how to break them

* How to unbreak (some of) them
— Sample selection bias

— Covariate shift



No free lunch

Thm: Let A be any learning algorithm for
binary classification with 0/1 loss over X,

and let m < |X|/2 be the training set size.
Then, there exists D such that:

1. There exists fstL () =0

2. With prob at least 1/7 over choice of
S5~D™, we have L _(A(S)) > 1/8



No free lunch —why?

Thm: Let A be any learning algorithm, let m < |X|/2 be the training
size. Then, exists D st: (1) exists good f and (2) A doesn't find it.

* Pick set C of size 2m, consider all f: C — {0,1}
« Consider D; that puts all mass on { (x, f(x)) : x in C}

e Based on S~D_M™ can only distinguish half such fs

* Given "test data”, might get Y2 correct due to
memorization, and get ¥z of the rest correct by luck
* So expected loss is at least Y4

* Some simple bounds complete the statement



How to block NFL?

Thm: Let A be any learning algorithm, let m < |X|/2 be the tralnlng
size. Then, exists D st: (1) exists good f and (2) A doesn't find it.

* Pick set C of size 2m, consider all f: C — {0,1}
« Consider D; that puts all mass on { (x, f(x)) : x in C}

e Based on S~D_M™ can only distinguish half such fs

* Given "test data”, might get Y2 correct due to
memorization, and get ¥z of the rest correct by luck

* So expected loss is at least Y4

* Some simple bounds complete the statement



How do we block NFL?

Def (Shattering): Let H be a set of functions X — {0,1} and
let C bet a subset of X. H shatters C if H contains all
functions C - {0,1}.

Thm (NFL restated): Let A be a learning algorithm that
outputs a function in H. If there exists a set C of size 2m
that is shattered by H, then NFL applies.

Goal: make sure that no large sets are shattered by H.

Def (VC-dimension): VCdim(H) = size of largest C that is
shattered by H.



What does VC buy us?

Def (VC-dimension): VCdim(H) = size of largest C that is
shattered by H.

Thm: Assume H has VCdim d, and we have N iid training
examples, then with probability at least 6 over choice of
training data an any internal randomization, empirical risk
minimization (ERM) has:

810gd+810g%
N

Often called the “fundamental theorem of statistical
learning”

test train

error — <error +




Assumptions = vulnerabilities

What does the Fundamental Theorem of Statistical
Learning assume?

* Training distribution matches test distribution

* What we care about is zero/one loss

* Number of training examples grows like sqrt(log(d))
* Training set is iid

* We don't get unlucky



ACM Code of Ethics

“To minimize the possibility of indirectly harming
others, computing professionals must minimize
malfunctions by following generally accepted
standards for system design and testing.
Furthermore, it is often necessary to assess the social
consequences of systems to project the likelihood of
any serious harm to others. If system features are
misrepresented to users, coworkers, or supervisors,
the individual computing professional is responsible
for any resulting injury.”

https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct



Immigration and Customs Enforcement’s
Homeland Security Investigations “Industry Day”

e

A EXTREME VETTING INITIATIVE —

LK
s OVERARCHING VETTING
Extreme Vetting Initiative Objectives (cont.)

Performance Objectives of the Overarching Vetting Contract:

1. Centralizes screening and vetting processes to mitigate case backlog and provide
law enforcement and field agents with timely, actionable information;

. Allows ICE to develop richer case files that provide more value-added information to
further investigations or support prosecutions in immigration or federal courts;

. Allows ICE to perform regular, periodic and/or continuous review and vetting of
nonimmigrants for changes in their risk profile after they enter the United States and;

. Automates at no loss of data quality or veracity any manually-intensive vetting and
screening processes that inhibit ICE from properly and thoroughly vetting individuals

in a timely fashion.
@ICE

https://theintercept.com/2017/08/07/these-are-the-technology-firms-
lining-up-to-build-trumps-extreme-vetting-program/




Real Al...

viare-AlLvastly capable
2) Make-vastly capable Albeneficial

1) Make Al beneficial L
2) Make beneficial Al vastly capablefff ¥

Slide credit:
Margaret Mitchell
m-mitchell.com




Train/Test Mismatch

* When working with real
data, training sample
— reflects human biases

— is influenced by practical
concerns

* e.g, what kind of data

is easy to obtain “bbc. com/news/technology-40416606

* Train/test distribution mismatch is frequent issue

— aka covariate shift, sample selection bias, domain
adaptation



the age of automated decision making

ON THE RISE

Investment in technologies that use artificial intelligence
has climbed in recent years.
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things can go really badly

Many Cars Tone Deaf To Women's Voices

To predict and serve?

Kristian Lum, William lsaac

: : i Discrimination in Online Ad Delivery
First published: 7 October 2016 *

Latanya Sweeney
Harvard University
latanya@fas.harvard.edu

January 28, 20131

Fargbook Lets Advertisers Exclude

ce In areas rs by Race
1ises some y

as
- \ Edgewood h as
M h ° B ° _ inds of
acnine bias L - > @ .
There's software used across the country to predict future criminals. And it's biased against blacks. & - o ) e 4

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016
S @ Comment # Share

Logan Circle

Bellevue
Washington Heights

Southwest Washington ;.‘ Natalie Smith, Mark Josephs, Jan

MEAN EXPECTED WAIT TIME

290.19 SECONDS 459.96 SECONDS



three (out of many) sources of bias

data collection
objective function

feedback loops



sample selection bias

true
population

population machine :
samples learning

Corinna Cortes,
Domain adaptation

James Heckman,
Nobel prize econ

(2000) and sample bias

o\ Sample selection correction theory and
bias as algorithm for
SpéCZﬁCCZtiOlfl error. regression
Econometrica TCS, 2013

(1979)




it's not just that error rate goes up...

Prediction Fails Differently for Black Defendants

WHITE AFRICAN AMERICAN

Labeled Higher Risk, But Didn't Re-Offend

Labeled Lower Risk, Yet Did Re-Offend

Source: Propublica, “Machine Bias”



what are we optimizing for?
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what are we optimizing for?
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feedback loops in stop+trisk

Can we reduce the
number of (and bias in)
stops under a stop and
frisk policy?

- - Complete model
— Reduced model
B Heuristic model

What happens
iffwhen police
officers start . R R
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Percent of stops
s o
u SI n g th IS Personalized risk assessments in the criminal justice system
Goel, Rao & Shroff; American Economic Review, 2016

system!?



three (out of many) sources of bias

data collection
objective function

feedback loops



CI':

Joanna Bryson Kate Crawford  Nick Diakopoulos Sorelle Friedler
@j2bryson @katecrawford @ndiakopoulos @kdphd

( )
Fairness, Accountability &

Transparency in ML
fatml.org

Critical Algorithm Studies:
A Reading List

socialmediacollective.org/
reading-lists/

critical-algorithm-studies
. J

-

Suresh Venkat Hanna Wallach
@geomblog @hannawallach




Classical "Single-domain” Learning

Predict;

amazoncom

Running with Scissors Title: Horrible book, horrible.

This book was horrible. | read half, suffering from a headache the entire time, and eventually |
lit it on fire. 1 less copy in the world. Don't waste your money. | wish | had the time spent
reading this book back. It wasted my life

| S0 the topic of ah the talk today is online learning




Domain Adaptation

(:C, y) i Prs[l’, y]

Training Source

the topic of ah the talk today is online learning

(ZIZ‘, y) g PIT[ZU, y]
Testing Target

"2 Everything is happening online. Even the slides are produced  on-line



Domain Adaptation

Natural Language Processing Visual Object Recogniy

Packed with fascinating info

A breeze to clean up




Classical vs Adaptation Error

Classical Test Error:

complexity

Etest S é\tmin T M

Measured on the
same distribution!

Adaptation Target Error:

n

€ < 77
teSt o Measured on a
new distribution!



Common Concepts in Adaptation

Covariate Shift
Prglylz] = Proly|z

Single Good Hypothesis

dh* eg(h*), er(h*) small

Easy Hard

Domain Discrepancy and Error




A bound on the adaptation error

Let h be a binary hypothesis. If Prg(y|z) = Prp(y|x), then

er(h) < es(h) /X Pro(z) — Pro(z)| da

Minimize the total variation



Covariate Shift with Shared Support

Assumption: Target & Source Share Support

Va, Prglz| # 0 iff Prp|x| £ 0

Reweight source Instances to minimize discrepancy




Source Instance Reweighting

Defining Error
ET(h) e 43PI'T[ZU] ”Pr [y|z] [ ( )#y]

Using DefrttienQf Expectation

JPr [y | x] [ ( ) # y]

per-instance

weights w
43Pr[y|a?] [h(ﬂf) # y] 5

7

Rearranging

er(h) = es(h,w) = Ep,.




Sample Selection Bias

Another Way to View

y  Draw from the target Pro|z] .




Sample Selection Bias

Redefine the source distribution

y  Draw from the target Prr|x]

»  Select Iinto the source with

Prio = 1|z]

Prp|x|Prlo = 1|x]
Prioc = 1]

Prglz| = = Prplz|o =1



Rewriting Source Risk

B vl lor— il

2l Rinlior = il
Rearranging
Prp|x Rila: =i

Prglz] Prlo = 1x] per-instance

welghts w

Prio = 1| not dependent on x ’
Es(h,UJ) X 4:PI‘S[:E] 4:Pr[y|a:] [h(ﬂ?) # y]




Logistic Model of Source Selection

PI[O' — 1‘37] — 1—|—exp(}9_'_ai‘-|-b)

Training Data
Source instances, o = 1

Target unlabeled instances, o = 0



Selection Bias Correction Algorithm

Input:
Labeled source data




Selection Bias Correction Algorithm

Input:
Labeled source data
Unlabeled target data

e




Selection Bias Correction Algorithm

Input: Labeled source and unlabeled target data

1) Label source instances as o0 = 1, targetas o = ()




Selection Bias Correction Algorithm

Input: Labeled source and unlabeled target data

y  Label source instancesas o0 = 1, targetas 0 = 0

»  Train predictor Prlo = 1|x| = 1+exp(19Ta:+b)




Selection Bias Correction Algorithm

Input: Labeled source and unlabeled target data

y  Label source instances as & = 1, targetas o = 0

»  Trainpredictor  Pr[o = 1|z] = 1—|—eXp(19Ta:—|—b)

»  Reweight source instances




Selection Bias Correction Algorithm

Input: Labeled source and unlabeled target data

y  Label source instancesas 0 = 1, targetas o = 0

»  Train predictor Pr[a — 1\:13'] — 1+6Xp(197$+b>

»  Reweight source instances
» Train target predictor




How Bias gets Corrected

H A

L]
- m

 n



Rates for Re-weighted Learning

" (h,w): weighted source test error on sample of size n

With probability 1 — 0, for every h

‘ég(h,w) — GT(h)‘ < \/O (%) + O@xex ’w(gj)Z

n

Adapted from Gretton et al.



Sample Selection Bias Summary

Two Key Assumptions
1) Covariate shift: Prgly|x| = Proly|z]

2) Shared support: Vz, Prg|x| # 0 iff Prp|z| # 0

N n
Advantage es(h,w) —= 6@

Optimal target predictor
without labeled target data



Sample Selection Bias Summary

Two Key Assumptions
1) Covariate shift: Prgly|x| = Prply|z]

2) Shared support: Vz, Prg|x| # 0 iff Prp|z| #£ 0

n

Advantage es(h,w) oo €T (h)

Disadvantage
PI‘T (ZE)

Convergence to er(h) depends on max, Prs(2)



Sample Selection Bias References

http://adaptationtutorial.blitzer.com/references/

[1] J. Heckman. Sample Selection Bias as a Specification Error. 1979.

[2] A. Gretton et al. Covariate Shift by Kernel Mean Matching. 2008.

[3] C. Cortes et al. Sample Selection Bias Correction Theory. 2008

[4] S. Bickel et al. Discriminative Learning Under Covariate Shift. 2009.




Unshared Support in the Real World

amazoncom

TR

Running with Scissors
Title: Horrible book, horrible.

This book was horrible. | read half,
suffering from a headache the entire
time, and eventually 1 lit it on fire. 1 less
copy In the world. Don't waste your
money. | wish | had the time spent
reading this book back. It wasted my life

Avante Deep Fryer; Black
Title: lid does not work well...

| love the way the Tefal deep fryer
cooks, however, | am returning my
second one due to a defective lid
closure. The lid may close initially,
but after a few uses it no longer
stays closed. | won't be buying this
one again.

Il

(m
II'p




Unshared Support in the Real World

Il

Running with Scissors Avante Deep Fryer; Black
Title: Horrible book, horrible. Title: lid does not work well...

(m
II'p

| love the way the Tefal deep fryer
cooks, however, | am returning my

This book was horrible. | read half,
cuffarinn fram a2 haadacha tha antira

Error Increase: 13% - 26%

UUluy T CIC VUVOUTIU:, DUITc 7Traaotce .yuu FTOIC  CATCOT =K ToVv TOoOCTO - Tt 11U TUTTYgoT

money. | wish i had the time spent stays closed. | won't be buying ths
one again.

reading this book back. It wasted my
. life .




Coupled Subspaces

No Shared Support .

Single Good Linear Hypothesis
160%, €5(0") 4+ er(6*) small

Stronger than Prslylz] = Prylylz]



Coupled Subspaces

No Shared Support '

Single Good Linear Hypothesis
10*, €g(07) + er(6*) small

Coupled Representation Learning

Px couples domains
Bound target error ep 7(6)



Single Good Linear Hypothesis?

0%, e€s(0*) +ep(0*) small

Adaptation Squared Error

Target  Books Kitchen
Source
Books 1.35
Kitchen 1.19

Both



Single Good Linear Hypothesis?

0%, e€s(0*) +ep(0*) small

Adaptation Squared Error

Target  Books Kitchen
Source
Books 1.35
Kitchen 1.19

Both 1.38 1.23



Single Good Linear Hypothesis?

0%, e€s(0*) +ep(0*) small

Adaptation Squared Error

Target  Books Kitchen
Source
Books 1.35 1.68
Kitchen 1.80 1.19

Both 1.38 1.23



A bound on the adaptation error

Let h be a binary hypothesis. If Prg(Y|x) = Prp(Y|z),
then

What If a single good hypothesis exists?

A better discrepancy than total variation?



A generalized discrepancy distance

Measure how hypotheses make mistakes

Linear, binary discrepancy region ]\
[

h/



A generalized discrepancy distance

Measure how hypotheses make mistakes

discy (Q, P) =

Jax |Eqlh(z) # hi(w)] — Eplh(z) # '(2)]]

low low high

h h

% h'



Discrepancy vs. Total Variation

Discrepancy Total Variation

Computable from finite samples. Not computable in general

®e 0k




Discrepancy vs. Total Variation

Discrepancy Total Variation

Computable from finite samples. Not computable in general




Discrepancy vs. Total Variation

Discrepancy Total Variation

Computable from finite samples. Not computable in general

Low?




Discrepancy vs. Total Variation

Discrepancy Total Variation

Computable from finite samples. Not computable in general

High?




Discrepancy vs. Total Variation

Discrepancy Total Variation

Computable from finite samples. Not computable in general

High?

Related to hypothesis class Unrelated to hypothesis class

Bickel covariate shift algorithm heuristically minimizes both measures



Is Discrepancy Intuitively Correct?

4 domains: Books, DVDs, B&D, E&K  Shared

Electronics, Kitchen Vocabulary
B&D: fascinating, boring E&K: super easy, bad quality
14 -
. e
D
g "
o *DE
<
Lﬁ 5 e BD
qé-" 4 /
IC_G EK/
2
0

60 65 70 75 80 85 90 95 100

Approximate Discrepancy




An adaptation bound

S, T: Source and target H: Hypothesis class n: Sample size

N N

S: Labeled S sample  T': Unlabeled T sample

Rs(H), R+(H): Rademacher complexities

With probability 1 — o0, for h the ERM of S:

r ()~ er ()< Ceglin W)AQ (R(H) + Ry(H))
\/ loi 5 diSCH(S@




Representations and the Bound

-
Linear Hypothesis Class: h(x) = sgn (‘9 m)

L T
Hypothesis classes from projections P: 6 ' Px

L X

3 _ 3
OP_IO

1 N
0 0

0 0

1 1




Representations and the Bound

Linear Hypothesis Class:

h(z) =sgn (0 z)

Hypothesis classes from projections P o' Py
L P
3P
N 0 Rd
P 41
0
. Goals for P
1 y  Minimize divergence

2)

EP,T(H*) — GI,T((Q*) small



Learning Representations: Pivots

(0>
W
\, N

fantastic
highly recommended

Source

Target

fascinating defective
poring sturdy
read half leaking
couldnt put It down fike a charir
A
N\ waste of money Al

horrible




Predicting pivot word presence

Do not buy e

N

An absolutely great purchase

A sturdy deep fryer




Predicting pivot word presence

Do not buy the Shark portable steamer. The trigger O
mechanism is defective. —

An absolutely great purchase

A sturdy deep fryer




Predicting pivot word presence

Do not buy the Shark portable steamer. The trigger
mechanism is defective.

An absolutely great purchase. . . . This blender is
incredibly sturdy.

Predict presence of pivot words
Pu( geat ) ( oreat (2) o< exp { (@, w( great )) }

A@turd} deep fryer




Finding a shared sentiment subspace

w(highly
recan?mend

- pw pivots|T) generates N new features

- Pw( oy §( GW - |2) - uDid highly

recommend appear?”

* Sometimes predictors capture
non-sentiment information

highly recommend




Finding a shared sentiment subspace

W= | u ... whighly ) ... wy
| recan?mend |

highly recommend

- pw pivots|T) generates N new features
| | highl e ’ e,

pw(recggv%):end)(I'eCOng’lm)éndhj) -‘Did hlghly ® o °
recommend appear?”

S o—o—o0oo—> (redl

* Sometimes predictors capture A .
non-sentiment information ° o




Finding a shared sentiment subspace

W= | u ... whighly ) ... wy
| recan?mend |

highly recommend
- pw pivots|T) generates N new features
| | highly i y T
N w(recmyend)(recommendm "Did highly O e
recommend appear?”
S o—o—o0oo—> (redl
* Sometimes predictors capture A
non-sentiment information ° o °




Finding a shared sentiment subspace

[ | i -
‘Let P be a basis for the
— highl
v uljl L f‘“(ré%m?mend) o wlN subspace of best fit 1}/
highly recommend
© Pw pivots|T) generates N new features P
. pw(recg%%{end) ( I'ngII%I;)%nd |QZ) -"Did hlghly 1 wonderfu

® e
[
recommend appear?” /

o—o—o0oo—> (redl

* Sometimes predictors capture .
non-sentiment information ° °




Finding a shared sentiment subspace

[r | M . -
et be a basis for the
— highl
W uljl f‘“(,/ﬁ(m?mend) wlN subspace of best fit W
_ - PP captures sentiment
variance in
© pw pivots|x) generates N new features P (highly recommend, great )

- Pw( oy §( GW - |2) - uDid highly

recommend appear?”

* Sometimes predictors capture
non-sentiment information



P projects onto shared subspace

Source




P projects onto shared subspace

Source

i

B e
B =

h(z) =sgn (0' Px)



Correlating Pieces of the Bound

er(h) = ex(h") < @E5(h, WD O (Rg(H) + Ry(H))

log + N
+0 \/og5 +discy (S, T)

I

Component Source
Projection Discrepancy  Huber Loss  Target Error

ldenitity  1.796 0.003 0.253



Correlating Pieces of the Bound

er(h) = ex(h") < @E5(h, WD O (Rg(H) + Ry(H))

log + N
+0 \/og5 +discy (S, T)

I

Component Source
Projection Discrepancy  Huber Loss Target Error
ldenitity  1.796 0.003 0.253

Random 0.223 0.254 0.561



Correlating Pieces of the Bound

er(h) = ex(h") < @E5(h, WD O (Rg(H) + Ry(H))

log + N
+0 \/og5 +discy (S, T)

I

Component Source
Projection Discrepancy  Huber Loss Target Error
Idenitity  1.796 0.003 0.253
Random  0.223 0.254 0.561

Coupled Projection ~ 0.211 0.07 0.216



Target Accuracy: Kitchen Appliances

88

84

80

76

12

Source Domain
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Target Accuracy: Kitchen Appliances

88

84

80
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87.71%

87.71%

87.7%

84.0%

14.5%

74.0%

Source Domain




Target Accuracy: Kitchen Appliances

88

84

80

70

12

87.7% 87.7% 87.7%
85.9%
84.0%
81.4%
]
]
78.9%
14.5% 74.0%

Source Domain




Adaptation Error Reduction

88

84

87.71% 87.71% 87.71%

85.9%

84.0%

36% reduction in error due to
adaptation




Representation References

http://adaptationtutorial.blitzer.com/references/

[1] Blitzer et al. Domain Adaptation with Structural Correspondence Learning. 2006.

2] S. Ben-David et al. Analysis of Representations for Domain Adaptation. 2007.

[3] J. Blitzer et al. Domain Adaptation for Sentiment Classification. 2008.

[4] Y. Mansour et al. Domain Adaptation: Learning Bounds and Algorithms. 2009.




Today’s summary

* Quantifying what can and cannot be learned

* No free lunch

* VVC dimension

* What are our core assumptions / how to break them

* How to unbreak (some of) them

* Sample selection bias

 Covariate shift



Your homework

Find an example in the news of a machine learning system that
potentially suffers from sample selection bias, or some other
related bias

Bonus points if it's not US-centric! :)

How would you break the presented sample-selection-bias
correction approach?

Still time to fill out go.umd.edu/mlvote
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