HORROR S TGS

THE PIT AND THE PENDULUM

Lorenzo Alvisi
Cornell University

.

gl A55IC HOR

Ease
of
Programming

e C| ASSIC HARROR STIEIES

Ease

Programming

.
.

Performance

of Performance

INTERNSHIP!

Ease of

I KNOW WHAT YOU DID "™
LASTI SUMMER, .. 9 £

Performance

o amazon
DynamoDB
. mongo
@@ NCURREN G SORRECTINES

- Safety
+ “nothing bad happens”

(ecly

lo Carra (1912)
Congurrency,VWoman oh'a balcon)

- Safety
+ “nothing

e Liveness

* “something good
eventually happens”

SORRECTINESS

bad happens”

SEOULCNTIAL OBJEGHE

Thanks to Maurice Herlihy

“The Art of Multiprocessor Programming”

 Each object has a state

» Register:

» Queue:

the value it stores

the sequence of objects it holds

* Each object has a set of methods

» Register:
» Queue:

Read/Write
Ena/Deqg/Head

SEOULCNTIAL OBJEGHE

Thanks to Maurice Herlihy

“The Art of Multiprocessor Programming”

 Each object has a state

» Register: the value it stores

» Queue: the sequence of objects it holds

SEOULENTIAL SPECIFICATICIRNS

Thanks to Maurice Herlihy

* If (precondition)

» the object is in such-and-such-state before method is called

* Then (postcondition)

» the method will return a particular value

» or throw a particular exception

* and (postcondition continued)

» the object will be in some other state when method returns

FREAND POST CONDIFICHNS
HORCBIEL)

Thanks to Maurice Herlihy

« Precondition

» Queue is non-empty 0o

« Postcondition

» Returns first item in queue

« Postcondition

» Removes first item in queue

FREAND POST CONDIFICHNS
HORCBIEL)

Thanks to Maurice Herlihy

« Precondition

» Queue is empty

« Postcondition

» Throws Empty exception

« Postcondition

» Queue state unchanged

FREAND POST CONDIFICHNS
HORCBIEL)

Thanks to Maurice Herlihy

« Precondition

» Queue is non-empty oo

« Postcondition

» Returns first item in queue @

« Postcondition

» Removes first item in queue

BEWULENTIAL SPECIFICATRICINS
ARE AWESOME 7 e

* Interactions among methods captured by side-effects on

object state

» State between method calls is meaningful

* Documentation size linear in the number of methods

» Separation of concerns: each method described in isolation

* Can add new methods

» Without changing description of old methods

i EIAT AECIEHE
EONCURRENT SPECIFICATICGINSS

« Methods?
o METEODS TAKETRIMIE
+ Adding new methods?

0 0o oleloe

e ©

|:| Q-enq(@) |__;| ng(o) void

Method call

FIETTHODS TAKEFRINMIS

* if you are Sequential

» Really? Never noticed!

Sl you are Concurrent
» Method call is not an event
» Method call is an interval

* Concurrent method calls overlap! x

e[DOES IT MEANFFEIS
EORRECTNESS

* Sequential

» Each method described in isolation

« Concurrent

» Must consider all possible interactions between
concurrent calls

- What if two enq() overlap?
- What if enq() and deq() overlap?

e[DOES IT MEANFFEIS
EORRECTNESS

 Sequential

» Object needs meaningful states only between
method calls

« Concurrent

» Because method calls overlap, object may
never be between method calls

e[DOES IT MEANFFEIS
EORRECTNESS

 Sequential

» New methods do not affect existing methods

« Concurrent

» Everything can potentially »
interact with everything else | ‘

N '}'\;»' \“ TS ‘1 .
x L

L i
ooy N

A\ ABOUT DATABASESE

.‘ e

i INSACTIONS TAKE RIS

A=GSHEERS A=GSHEERS

+ Sequential specification + Sequential specification

» A read returns the result of the latest completed write » A read returns the result of the latest completed write

+ What if reads and writes can be concurrent?

A=GSHEERS

+ Sequential specification

» A read returns the result of the latest completed write

* What if reads and writes can be concurrent?

» A read not concurrent with a write returns the result
of the latest completed write

S FE REGISTIERS

+ Sequential specification

» A read returns the result of the latest completed write

+ What if reads and writes can be concurrent?

» A read not concurrent with a write returns the result
of the latest completed write

+ And if they are concurrent! Anything goes!

A=GSHEERS

+ Sequential specification

» A read returns the result of the latest completed write

+ What if reads and writes can be concurrent?

» A read not concurrent with a write returns the result
of the latest completed write

* And if they are concurrent?

S FE REGISTIERS

+ Sequential specification

» A read returns the result of the latest completed write

+ What if reads and writes can be concurrent?

R @ ()
» A read not concurrent with a write rr@e)tums the result

of the latest completed write:®
wa(6)

e -

+ And if they are concurrent! Anything goes!

Time

FEGUL AR REGISTRERS

* Sequential specification

» A read returns the result of the latest completed write W

* What if reads and writes can be concurrent?

r (5) r3(6) C
» A read not concurrent with a write returns the result r (6) r3(6) A N W E D O B E | | E R?
of the latest completed write) v

©) r(5)
* And if they are concurrent?
A read overlapping with a write returns <r_(5)>
either the old or the new value! : W‘(S)I
w2(6)
Time

BINIEARIZAE] SRS BINEARIZABLE REGISTFERS

Herlihy & Wing ‘87
 Each method
» Takes effect instantenously

» Between invocation and response

« Object is correct (linearizable) if this “sequential” e
behavior is correct o wa(6)

» All executions of a linearizable object are

. . Time
linearizable

EINEARIZABLE REGISTRERS

©)

Time

EINEARIZABLE REGISTRERS

©)

Time

EINEARIZABLE REGISTRERS

Time

EINEARIZABLE REGISTRERS
7 TOMIC)

©,

Time

EINEARIZABLE REGISTRERS

Time

EINEARIZABLE REGISTRERS

Time

EINEARIZABLE REGISTRERS

©)

Time

EINEARIZABLE REGISTRERS

Time

EINEARIZABLE REGISTRERS

©)

Time

EINEARIZABLE REGISTRERS

Non Linearizable!
r2(6) r3 (5)

o]
©,

Time

EINEARIZABLE REGISTRERS

Time

RINEARIZABLE QUESIE
Q

Q.enq(@) X Q-de(J(‘?

Q.enq(@) ; Q.deq(@) :

Time

RINEARIZABLE QUEGIE
Q

‘ Q.enq(@) X ﬁ-d€Q(.)

Q.enq(@)) ‘ Q.deq(@)

Time

BINIEARIZAE] SRS

Herlihy & Wing ‘87

+ Allows us to capture the notion of an object
supporting atomic operations

* Is composable: executions involving linearizable
objects are linearizable!

» Separation of concerns

RINEARIZABLE QUESIE

Time

ALTERNATIVE:
EEOUENTIAL CONSISTENSNg

Lamport ‘79

* "“The result of any execution is the same as if the operations of all

processes were executed in some sequential order and the operations

of each process appear in this sequence in the order specified by its
program”

+ Often used to describe multiprocessor memory architectures

+ Unlike linearizability, SC's total order need not respect real time

» Operations from the same thread cannot be reordered

» Non-overlapping operations from different threads can be reordered

AL E

Non Linearizable...

W\(S) linearization I"\(S)
-—

EEEEEEEE

Time

I EOIRE M

Sequential Consistency
ls Not Composable

i.e., an execution involving a collection of sequentially
consistent objects may not be sequentially consistent

AL E

... but Sequentially Consistent!

Wi (5) linearization

ri(5)

Time

If=E CASE@E
iEsE FIFO OUESES

[] <Peng(@) ~Q.eng(@) ~P.deq(®@)

B

~Q.enq(@)

«~Peng(@) +«Q.deq(@)

Time

If=E CASE@E If=E CASE@E
iEs= FIFO OUEEE iEs1= FIFO OUEEE

E «~P.eng(@) «~Q.enq(@) «~P.deq(@)

—Peng(@) «Peng(@) +Pdeq(@)

L] ~Q.eng(@)> <~Peng(@) +~Q.deq(@)
jf=E CASE @R jf=E CASE @R
li=E FIFO QOUESE i=E FIFO QOUESE

] ~Perat@r—-=apio(@) ~Pdeg(@)-

«~Q.eng(@)r «Q.eng(@) «Q.deq(@) ‘ Not Sequentially Consistent!

[@@ BPong(@) ~Quca(@)-

Time Ul

=t BIG PICTERE =it BIG PICTERE

client-specific

command identifier :
client c

client ¢
[

<c, cid, op>
<cid, result>

Server Server

o IEURE MOBDEE

Byzantine

“A distributed system is one in which the
failure of a computer you didn't even
know existed can render your own

computer unusable.”

Leslie Lamport

G

it
Mmission V"

ifi=IE BIG PIC TS

client

€
‘ <cid, result>

Server

ifi=IE BIG PIC TS

client c :

ifi=IE BIG PIC TS

client c

ifi=IE BIG PIC TS

OO 000000
U CHORGRGRORGROLC) (|
OlQlQlQlO lO lO lO lO IQ lQ

STE MACHINE REPLICARIGSS

|. Make server deterministic (state machine)

hi
- B State machine

STE MACHINE REPLICARIGSS

|. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same sequence of

state transitions
Commands

r -/
Chemts\:QC [\l
e

State machines

|

l\l\l

STE MACHINE REPLICARIGSS

|. Make server deterministic (state machine)

2. Replicate server

- o e State machines

STE MACHINE REPLICARIGSS

|. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same sequence of
state transitions

4. Vote on replica outputs for fault-tolerance

o

State machines

Clients \ L
b —

Voter

N

e CONUNDIRE e CONUNDIRE

ik

A: voter and A: voter and
client share fate! client share fate!

FEFCIC A COORDINANSS ifi=IE BIG PIC TS

O CRORGRORGRG) (|
All non-faulty state machines receive JeNelererere @ ¢
o 000000 0T

all commands in the same order
[L

* Agreement: Every non-faulty state machine receives every command

* Order: Every non-faulty state machine processes the commands it
receives in the same order

iE=iE BIG PICTUSS iE=iE BIG PICTUSS

decide
—_

propose
—_—

* Validity — If a process decides v, then v was proposed by some process
* Agreement — No two correct process decide differently
* Integrity — No correct process decides twice

* Termination — Every correct process eventually decides some value

Mi=SSAGES TAKE RIS

Does it matter how much?

R J \o

ﬂ

LY D=

o _ OF COURSE! /
my

ANBTEL O TNCHRONOUS SYSTRERE

centralized clock
Should it matter for NS
CO RRECTN ESS? NO upper bound on the relative speed of processes

NO upper bound on message delivery time
Assumptions are
vulnerabilities!

Paxes

Always safe

Ready to pounce
on liveness

