
Lorenzo Alvisi
Cornell University

THE PIT AND THE PENDULUM

Ease
of

Programming
Performance

A CLASSIC HORROR STORY

Ease
of

Programming
Performance

A CLASSIC HORROR STORY
Ease

of
Programming

Performance

A CLASSIC HORROR STORY

I KNOW WHAT YOU DID
LAST SUMMER…

INTERNSHIP!

Ease of
Programming

Performance

CONCURRENCY
Pierre Franc Lamy (1855-1919)
Young girl on a balcony

Carlo Carrà (1912)
Concurrency, Woman on a balcony

CORRECTNESS

• Safety
• “nothing bad happens”

CORRECTNESS

• Safety
• “nothing bad happens”

• Liveness
• “something good

eventually happens”

SEQUENTIAL OBJECTS

• Each object has a state
‣ Register : the value it stores
‣ Queue: the sequence of objects it holds

Thanks to Maurice Herlihy
“The Art of Multiprocessor Programming”

SEQUENTIAL OBJECTS

• Each object has a state
‣ Register : the value it stores
‣ Queue: the sequence of objects it holds

• Each object has a set of methods
‣ Register : Read/Write
‣ Queue: Enq/Deq/Head

Thanks to Maurice Herlihy
“The Art of Multiprocessor Programming”

SEQUENTIAL SPECIFICATIONS
• If (precondition)
‣ the object is in such-and-such-state before method is called

• Then (postcondition)
‣ the method will return a particular value
‣ or throw a particular exception

• and (postcondition continued)
‣ the object will be in some other state when method returns

Thanks to Maurice Herlihy

PRE AND POST CONDITIONS
FOR DEQ

• Precondition
‣ Queue is non-empty

• Postcondition
‣ Returns first item in queue

• Postcondition
‣ Removes first item in queue

Thanks to Maurice Herlihy

PRE AND POST CONDITIONS
FOR DEQ

• Precondition
‣ Queue is non-empty

• Postcondition
‣ Returns first item in queue

• Postcondition
‣ Removes first item in queue

Thanks to Maurice Herlihy

PRE AND POST CONDITIONS
FOR DEQ

• Precondition
‣ Queue is empty

• Postcondition
‣ Throws Empty exception

• Postcondition
‣ Queue state unchanged

Thanks to Maurice Herlihy

SEQUENTIAL SPECIFICATIONS
ARE AWESOME

• Interactions among methods captured by side-effects on
object state
‣ State between method calls is meaningful

• Documentation size linear in the number of methods
‣ Separation of concerns: each method described in isolation

• Can add new methods
‣ Without changing description of old methods

So is
Maurice Herlihy

WHAT ABOUT
CONCURRENT SPECIFICATIONS?

• Methods?

• Documentation?

• Adding new methods?

METHODS TAKE TIME

Q.enq() Q.enq()
void

Method call

METHODS TAKE TIME
• if you are Sequential
‣ Really? Never noticed!

• …but if you are Concurrent
‣ Method call is not an event
‣ Method call is an interval

Concurrent method calls overlap!

WHAT DOES IT MEAN FOR
CORRECTNESS?

• Sequential
‣ Object needs meaningful states only between

method calls

• Concurrent
‣ Because method calls overlap, object may

never be between method calls

WHAT DOES IT MEAN FOR
CORRECTNESS?

• Sequential
‣ Each method described in isolation

• Concurrent
‣ Must consider all possible interactions between

concurrent calls
- What if two enq() overlap?
- What if enq() and deq() overlap?

WHAT DOES IT MEAN FOR
CORRECTNESS?

• Sequential
‣ New methods do not affect existing methods

• Concurrent
‣ Everything can potentially

interact with everything else

WHAT ABOUT DATABASES?

TRANSACTIONS TAKE TIME

OUTLINE

Distributed Systems Databases

REGISTERS
• Sequential specification

‣ A read returns the result of the latest completed write

REGISTERS
• Sequential specification

‣ A read returns the result of the latest completed write

• What if reads and writes can be concurrent?

REGISTERS
• Sequential specification

‣ A read returns the result of the latest completed write

• What if reads and writes can be concurrent?
‣ A read not concurrent with a write returns the result

of the latest completed write

REGISTERS
• Sequential specification

‣ A read returns the result of the latest completed write

• What if reads and writes can be concurrent?
‣ A read not concurrent with a write returns the result

of the latest completed write

• And if they are concurrent?

REGISTERS
• Sequential specification

‣ A read returns the result of the latest completed write

• What if reads and writes can be concurrent?
‣ A read not concurrent with a write returns the result

of the latest completed write

• And if they are concurrent?

SAFE

Anything goes!

 REGISTERS
• Sequential specification

‣ A read returns the result of the latest completed write

• What if reads and writes can be concurrent?
‣ A read not concurrent with a write returns the result

of the latest completed write

• And if they are concurrent?

SAFE

Time

w1(5)
r1

r2 r3

w2(6)

Anything goes!

(5)

(??) (??)

 REGISTERSREGULAR

Time

w1(5)
r1

r2 r3

w2(6)

A read overlapping with a write returns
either the old or the new value!

(5)

(5) (5)

• Sequential specification
‣ A read returns the result of the latest completed write

• What if reads and writes can be concurrent?
‣ A read not concurrent with a write returns the result

of the latest completed write

• And if they are concurrent?

r2 r3(6) (6)
r2 r3(5) (6)
r2 r3(6) (5)

CAN WE DO BETTER?

LINEARIZABILITY
• Each method
‣ Takes effect instantenously
‣ Between invocation and response

• Object is correct (linearizable) if this “sequential”
behavior is correct
‣ All executions of a linearizable object are

linearizable

Herlihy & Wing ‘87

 REGISTERSLINEARIZABLE

Time

w1(5)
r1

r2 r3

w2(6)

 REGISTERSLINEARIZABLE

Time

w1(5)
r1

r2 r3

w2(6)

 REGISTERSLINEARIZABLE

Time

w1(5)
r1

r2 r3

w2(6)

(5)

(5) (5)

 REGISTERSLINEARIZABLE

Time

w1(5)
r1

r2 r3

w2(6)

(5)

(5) (5)

 REGISTERSLINEARIZABLE

Time

w1(5)
r1

r2 r3

w2(6)

(5)

(5) (5)

(ATOMIC)

 REGISTERSLINEARIZABLE

Time

w1(5)
r1

r2 r3

w2(6)

(5)

(5) (6)

 REGISTERSLINEARIZABLE

Time

w1(5)
r1

r2 r3

w2(6)

(5)

(5) (6)

 REGISTERSLINEARIZABLE

Time

w1(5)
r1

r2 r3

w2(6)

(5)

(5) (6)

 REGISTERSLINEARIZABLE

Time

w1(5)
r1

r2 r3

w2(6)

(5)

(6) (5)

 REGISTERSLINEARIZABLE

Time

w1(5)
r1

r2 r3

w2(6)

(5)

(6) (5)

 REGISTERSLINEARIZABLE

Time

w1(5)
r1

r2 r3

w2(6)

(5)

(6) (5)

 REGISTERSLINEARIZABLE

Time

w1(5)
r1

r2 r3

w2(6)

(5)

(6) (5)

Non Linearizable!

 QUEUELINEARIZABLE

Time

Q

Q.enq() Q.deq()

Q.enq() Q.deq()

 QUEUELINEARIZABLE

Time

Q

Q.enq() Q.deq()

Q.enq() Q.deq()

 QUEUELINEARIZABLE

Time

Q

Q.enq() Q.deq()

Q.enq() Q.deq()

LINEARIZABILITY
• Allows us to capture the notion of an object

supporting atomic operations

• Is composable: executions involving linearizable
objects are linearizable!
‣ Separation of concerns

Herlihy & Wing ‘87

ALTERNATIVE:
SEQUENTIAL CONSISTENCY

• “The result of any execution is the same as if the operations of all
processes were executed in some sequential order and the operations
of each process appear in this sequence in the order specified by its
program”

• Often used to describe multiprocessor memory architectures

• Unlike linearizability, SC’s total order need not respect real time

‣ Operations from the same thread cannot be reordered

‣ Non-overlapping operations from different threads can be reordered

Lamport ‘79

EXAMPLE

w1(5) r1(5)

w2(7)

Time

Earliest
linearization

Latest
linearization

Non Linearizable…

Latest
linearization

EXAMPLE

w1(5) r1(5)

w2(7)

Time

Latest
linearization

… but Sequentially Consistent!

THEOREM

Sequential Consistency
Is Not Composable

i.e., an execution involving a collection of sequentially
consistent objects may not be sequentially consistent

THE CASE OF
THE FIFO QUEUE

Q.enq() P.enq() Q.deq()

P.enq() Q.enq() P.deq()

Time

THE CASE OF
THE FIFO QUEUE

P.enq() P.enq() P.deq()

Time

THE CASE OF
THE FIFO QUEUE

Q.enq() P.enq() Q.deq()

P.enq() Q.enq() P.deq()

Time

THE CASE OF
THE FIFO QUEUE

Q.enq() Q.deq()Q.enq()

Time

THE CASE OF
THE FIFO QUEUE

Q.enq() P.enq() Q.deq()

P.enq() Q.enq() P.deq()

Time

Not Sequentially Consistent!

THE BIG PICTURE

Replica1Replica2Replica3Replica4Replica5Server

<c, cid, op>

client-specific
command identifierclient c

THE BIG PICTURE

Replica1Replica2Replica3Replica4Replica5Server

<cid, result>

client c

“A distributed system is one in which the
failure of a computer you didn’t even
know existed can render your own
computer unusable.”

Leslie Lamport

FAILURE MODELS

crash

THE BIG PICTURE

Replica1Replica2Replica3Replica4Replica5Server

<cid, result>

client c

THE BIG PICTURE

Replica1 Replica2 Replica3 Replica4 Replica5

client c

f + 1

THE BIG PICTURE

Replica1 Replica2 Replica3 Replica4 Replica5

client c

f + 1

THE BIG PICTURE

Replica1 Replica2 Replica3 Replica4 Replica5

c

STATE MACHINE REPLICATION
1. Make server deterministic (state machine)

State machine

STATE MACHINE REPLICATION
1. Make server deterministic (state machine)

2. Replicate server

State machinesState machine

STATE MACHINE REPLICATION
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same sequence of
state transitions

State machines

Clients

Commands

STATE MACHINE REPLICATION
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same sequence of
state transitions

4. Vote on replica outputs for fault-tolerance
State machines

Clients

Voter

A CONUNDRUM

. . .

A: voter and
client share fate!

A CONUNDRUM

. . .

A: voter and
client share fate!

REPLICA COORDINATION

• Agreement: Every non-faulty state machine receives every command

• Order: Every non-faulty state machine processes the commands it
receives in the same order

All non-faulty state machines receive
all commands in the same order

THE BIG PICTURE

Replica1 Replica2 Replica3 Replica4 Replica5

c

. . . .

THE BIG PICTURE

Replica
1

Replica
2

Replica
3

Replica
4

Replica
5

�

. . . .

c

Replica1 Replica2 Replica3 Replica4 Replica5

THE BIG PICTURE

Replica
1

Replica
2

Replica
3

Replica
4

Replica
5

�

. . . .

Replica1 Replica2 Replica3 Replica4 Replica5

�c

CONSENSUS

CONSENSUS

• Validity – If a process decides , then was proposed by some process

• Agreement – No two correct process decide differently

• Integrity – No correct process decides twice

• Termination – Every correct process eventually decides some value

propose decide

v v

MESSAGES TAKE TIME
Does it matter how much?

OF COURSE!

AND YET...

Should it matter for
CORRECTNESS?

Assumptions are
vulnerabilities!

ASYNCHRONOUS SYSTEMS

NO

upper bound on message delivery time

NO

NO

upper bound on the relative speed of processes

centralized clock

CONSENSUS† IS IMPOSSIBLE IN
AN ASYNCHRONOUS SYSTEM*

*in the presence of failures†deterministic

CONSENSUS† IS IMPOSSIBLE IN
AN ASYNCHRONOUS SYSTEM*

*in the presence of failures†deterministic

Always safe

Ready to pounce

Paxos

on liveness

