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* We can define a strong notion of correctness for

concurrent objects

We can use consensus to achieve it in a

Google Cloud H Pl distributed setting
: ; ble? | ' = ible!
o be ok o » Impossible? HAl' Nothing is impossible!
assume more of the network
D. Ports et al.
Designing distributed systems unisng approximate synchrony in datacenter networks
NSDI'15
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* We can define a strong notion of correctness for r
concurrent objects
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* We can use consensus to achieve it in a (Jo)  weconissom o
N. CALIFORNIA NINGXIA (Coming soon)
d|Str|bUted Settlng e INDIA (Coming soon) O
» Impossible? HA! Nothing' is impossible!
TExceptions include:
¥ cappuccino after lunch or dinner Neor ot vttty Zoes svoner
(@F-4 amazon
v actually, asynchronous consensus A ’ webservices® 4
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Consistency

linearizability

Partition

Avallability Tolerance

for updates

Eric Brewer's CAP Theorem

“You can have at most two of C, A, and
P for any shared data system”

@
WHAT DOES , A, MEAN?

Werner Vogels, CTO Amazon ’ Y —
F.

“An important observation is that in larger n; |
4 J
7 Emalc

distributed-scale systems, network partitions are a

given; therefore, consistency and availability

cannot be achieved at the same time.”
http://www.allthingsdistributed.com/2008/ | 2/eventually_consistenthtml k

Farewell consistency, we hardly knew ve...

@
WHAT DOES , A, MEAN?

“No system where P is possible can at
all times guarantee both C and A"

Le.

if your network is highly reliable (and fast), so that
P is extremely rare, you can aim for both C and A

Google Spanner
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* Facebook, Twitter; Amazon aim
for ALPS

» Availability
» low Latency
» Partition tolerance
» Scalability
+ What about consistency?

» Tension (you guessed it)
between performance and
ease of programming

BUENTUAL CONSISTREN Ghg GOSSIP

* Replicas are guaranteed to converge * Ineach round, a
replica exchanges n
» updates performed at one replica are eventually seen what it knows with
B others another replica chosen 9
y uniformly at random IS
. z G—
» if no more updates, replicas eventually reach the same , A S
* Like an epidemic, it is 32
state robust and efficient
- ¥ [/n
If no new updates are made to an object, eventually » “Infection” completes Time

all accesses will return its last updated value O\ Y2 unds
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+ Domain Name Service (DNS)

Facebook

« Amazon

« Twitter

Bayou (1995)

@ UoAL CONSISTEN G

Updates that are causally related should be seen by all replicas
in the same order. Concurrent updates may be seen by
different replicas in different orders (Hutto & Ahamad, 1990)

Two operations a and b are causally related (a —=b) if

|. The same client executes first a then b
2. b reads the value written by a

3. There exists an operation a' such thata—a'and a— b

BAYO U Terry et al; S@SES

Replicas keep ordered log
of updates reflected in their

state

Gossip entries in their log

If no more updates, logs

(states) eventually converge

But Bayou gives you more:

I. Receives selfie (update 2) then

defriend request (update |)
2. Whoops.

WHY
@ US5AL CONSISTENGE

“If the log of R
contains an update
first performed on R,
then the log of R
also contains all the
writes accepted by R;
prior to w.”

If a replica sees an
update w, it has seen all
updates that causally
precede wl

I. meditates unspeakable crime

2. defriends me (update I)

3. posts selfie (update 2) while
engaging in unspeakable crime



BEOULENTIALLY CONSISTIENER

E «~W(x)a— «—W(X)c—

| crXa—  «w(x)b—

m —r(xX)a — «—r(x)c = Y« r(x)b -

E «r(X)a — «—r(x)b =X « r(x)c —»
e USALLY CONSISITRERNEIE

-

L] wa e wib  we

m —r(xX)a —» «~r(X)c - «r(x)b -

E —r(x)a — —r(x)b - <« r(x)c—

CAUSALLY CONSISTENT?
|__;| —w(x)a— W
| cra—  «w(x)b—
[ ] —r(x)a - r(X)C— «—r(x)b-s
(0 ()b~ «—n(x)c—
CAUSALLY CONSISTENT?
|__;| —w(x)a— W
| crXa—  «w(x)b—
[ ] —r(x)a— —r(X)C— —r(x)b—
(0 ()b~ «—n(x)c—



@ UoAL LY CONSISTENEE @ USALLY CONSISTENGE

E E «~W(X)a— —W(X)c—

m «~r(x)a — m «~r(x)a — «~wW(X)b—

m w(x)a r(x)a w(x)c r(x)c wx)b  rx)b m —r(xX)a — «~r(X)c - «r(x)b -
@ USALLY CONSISTENGE @ USALLY CONSISTENGE

E E «~W(X)a— —W(X)c—

m «~r(x)a — m «~r(x)a — «~wW(X)b—

m —r(x)a — «—r(x)c - «r(xX)b— m —r(x)a — «—r(x)c - «r(xX)b—



@ UoAL LY CONSISTENEE

E «~Ww(X)a— «~W(X)c—
m «~r(x)a —

m —~rxX)a—  «w(X)b— «—r(x)c - «r(xX)b—

@ UoAL LY CONSISTENEE

E «~Ww(X)a— «~W(X)c—
m <= r(x)a ==

m —r(X)a—  «w(x)b— «~r(X)c = «r(x)b—

@ UoAL LY CONSISTENEE

m —r(x)a — «—r(x)c - «r(xX)b—
w(x)a w(x)b w(X)c
e USALLY CONSISITRERNEIE

]

I_-.:l —r(x)a — Does not meet the
sequential specification!

m s wOhdb o wix)c T rde e dE
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!
IN BAYOU PO DOES IT SG7lE=

: : : : « Datacenters have thousands of nodes...
* When replica R receives an * Replicas learn which updates

update from a client, it they need to exchange by , : :

assigns to it a timestamp comparing version vectors! . Ginormous version vectors!

(logical time;, i)
, e 2. Log requires one serialization point per datacenter
* Each replica Ri maintains a

version vector R.V[ ] v either causal dependencies only exist between

» Ri.V[j] = highest timestamp keys stored on a single node

of any write logged by R|
and known to R

v or some node must serialize across all nodes

mPS; CLUSTER OF OREISE mPS; CLUSTER OF OREISE
PRESERVING SERVERS ‘& PRESERVING SERVERS ‘&

SOSP*I |

® Many clients, few datacenters

yrge
® Consistent hashing to partition E

the keys

Keyk  Next node
_____ ° / clockwise is in
® Many clients, few datacenters

» in each partition a “primary" node

responsible for key G Hash |<e>/ and e
.. place on ring .




PS> CLUSTER OF ORIBi=E

PRESERVING SERVERS it

® Many clients, few datacenters

® Consistent hashing to partition () Bl
the keys e
P
» in each partition a “primary” node ﬂﬂ
responsible for key wa(6)

® Fach datacenter is linearizable

® Many clients, few datacenters : “"
‘s ";h

: : o ay 1,
® Consistent hashing to partition 'u;r -
the keys & u

® Fach datacenter is linearizable

» low latency,“no” partitions Time

TOWARDS SCALABLE
@5 AL CONSISTENGNE

* Replace serialization with distributed
verification

* On get, returned <version, value> is
stored in the client's contex

»  In principle, context includes
or written in client’s session: knd on!

e

» low latency,“no’ partitions

® Get/Put operations execute at a
local datacenter; and then
asynchronously replicated

* On get, returned <version, value> is
stored in the client's context

» In principle, context includes all values previously read

P> CLUSTER OF ORIBi=E

PRESERVING SERVERS it

» in each partition a “primary”’ node -

responsible for key

TOWARDS SCALABLE
@5 AL CONSISTENGNE

+ Replace serialization with distributed Wi
verification |

X3

Ml
or written in client’s session and what they depend on! \

T Ui
N
- V6

Z4



TOWARDS SCALABLE
@5 AL CONSISTENGNE

Replace serialization with distributed Wi
verification J
X3 i

On get, returned <version, value> is
stored in the client's context
M

» In principle, context includes all values previously read \
or written in client’s session and what they depend on!

T u
N
/Vé

Z4
On a put, client includes (and replicates)
its “nearest dependencies” from context...

TOWARDS SCALABLE
@5 AL CONSISTENGNE

Replace serialization with distributed

verification
t

On get, returned <version, value> is \
stored in the client's context

V
» In principle, context includes all values previously read 7l \ / 6

or written in client’s session and what they depend on!
Z4

On a put, client includes (and replicates)
its “nearest dependencies” from context...
and resets context to the latest put

TOWARDS SCALABLE
@5 AL CONSISTENGNE

Replace serialization with distributed Wi
verification J
X3

On get, returned <version, value> is
stored in the client's context
M

» In principle, context includes all values previously read \
or written in client’s session and what they depend on!

T Ui
N
P V6

Z4
On a put, client includes (and replicates)
its “nearest dependencies” from context...

TOWARDS SCALABLE
@5 AL CONSISTENGNE

Replace serialization with distributed

verification
t

On get, returned <version, value> is \
stored in the client's context

V
» In principle, context includes all values previously read 7l \ / 6

or written in client’s session and what they depend on!
Z4

On a put, client includes (and replicates)
its “nearest dependencies” from context...
and resets context to the latest put



TOWARDS SCALABLE
@5 AL CONSISTENGNE

* Replace serialization with distributed
verification

v
* On get, returned <version, value> is \
stored in the client’s context
» In principle, context includes all values previously read 7l \ / Lo
or written in client’s session and what they depend on! b

* On a put, client includes (and replicates)
its “nearest dependencies” from context...
and resets context to the latest put

+ Before applying z4, remote partition
verifies nearest dependencies have already
been applied

S DEMIC SYSIRES

EREORING CAUSAL CONSISTRENSSS

REWEST(SOSP ' 1) » Orbe (SO ECEHIEY
REsi-©n (SIGMOD '|3)

* Chain Reaction (Eurosys
159

- Cure (ICDCS 16)

» Tardis (SIGMOEBSEE

- Eiger (NSDI '13)

» Saturn (Eurcsys &8

130

+ Before applying z4, remote partition

» GentleRain (SOGEES

TOWARDS SCALABLE
@5 AL CONSISTENGNE

+ Replace serialization with distributed

verification

T
* On get, returned <version, value> is \
stored in the client's context | G
i - I 6
L e e i et s
Z4 t
» On a put, client includes (and replicates) @'
its “nearest dependencies” from context...

and resets context to the latest put

verifies nearest dependencies have already e v Z4

been applied ki @'

NS TRIAL SYSIFERES
BHIING CAUSAL CONSISTEN G
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No, ser;y now...

HEOVVDOVWN CASCAEIES

What causal Reality Slowdown
systems assume e cascade
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. : Writes are causally ordered
Replicated and sharded storage for a social network W



Slowdown Cascade

- 1
i

1

Wil Datacenter B 1

R e (s /

Alice’s advisor unnecessarily waits for Justin Bieber's
update despite not reading it

Current causal systems enforce causal consistency as an invariant

SEOVYVDOWN CASCAEIESS
IN EIGER vsoi13)

1200

.32 1000

s

E 800

= 600 A

Buﬁ‘grs for replicated OCC U LT Mehdi et al, NSDI*17

£ 20 writes grow out of

N control Observable Causal Consistency Using Lossy [imestamps
0 500 1000 1500 2000 2500

Replicated writes received

—Normal —Slowdown
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» Causal Consistency

OCCULT

Observable Causal Consistency
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lDatacenter B

_____-

- o e e e e e e e e e e

How can | guarantee clients observe
a causally consistent datastore ?



Client |

Client 2

Master

Master
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Datacenter A

Writes accepted only by master shards and then
replicated asynchronously and in-order to slaves

Shardstamp
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Datacenter B

Slave
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Datacenter B

Causal timestamp: vector of shardstamps
identifying the state client knows about

Client 3

Client |
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Shardstamp
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Datacenter B

Each shard keeps track of a shardstamp
which counts the writes it has applied

Shardstamp
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Datacenter A
S e -

Write protocol: causal timestamps stored with

Slave
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Datacenter B

objects to propagate dependencies

Client 3
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Client |

Client 2

Client |

Client 2

Shardstamp
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Datacenter A

Write protocol: causal timestamps stored with
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Datacenter B

objects to propagate dependencies

Shardstamp

Datacenter A
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Datacenter B

Read protocol: always safe to read from the Master

Client 3

Client 3

Client |

Client 2

Client |

Shardstamp
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Write protocol: causal timestamps stored with

Slave
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Datacenter B

objects to propagate dependencies

Shardstamp

Master

Slave

! 1
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! 1
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! 1
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1 1
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Datacenter B

Read protocol: object’s causal timestamp
merged into client’s causal timestamp

Client 3

Client 3



Shardstamp

Client | Master

Master

Client 2
DatacenterA:
S e -
Shardstamp

Client |

Client 2

Later writes reflect causal
timestamp of read object

Later writes reflect causal
timestamp of read object

Client 3

Client 3

Shardstamp

Client |

Client 3

)

[v I3

Client 2 1

Later writes reflect causal
timestamp of read object

Shardstamp

Client |

Client 3

Client 2

Replication: As in eventual consistency, asynchronous,
unordered writes are applied immediately



Shardstamp Shardstamp

1
1
1
1
(813 2] Bs3 2 (813 2] Bs3 2
) o 1
Client | Delayed! Client | Delayed! 1
1
|
! ?
|
non . 00
Client 3 : : O Client 3
! 1
! |
(35 5 (505 5 Il
Client 2 Client 2 1 1
|
- I
: Datacenter B:
So oo o= -
Replication: Slave increment its shardstamp using Read protocol: Clients run consistency
causal timestamp of replicated write checks when reading from slaves
Shardstamp Shardstamp
d 1
. 1
. 1
(813 2] [ eI | . (813 2] Bs3 2
o 1 o
Client | Delayed! 1 : Client | Delayed!
1
- :
! 1
|
| . 0|
: :R(Y) Client 3
! 1
! |
(505 5 Il (505 5
Client 2 1 1 Client 2
|
- I
: Datacenter B:
So oo o= -
Read protocol: Clients run consistency Read protocol: Though x is delayed,

checks when reading from slaves we can read y anyway!
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' : FREKINGDOM FOR A TIMES AT
83 2 Blsis 2] I '
Client | : N\
y ] I°NE * What happens to causal timestamps at scale?
S“lag . E EME » datacenters have tens of thousands of shards...
oo s |
Client 2 : :

IIIIlllllm

______

Read protocol: Though x is delayed,
we can read y anyway!

WO PRESGING TIMESTARMIES e IRY TALE ENEIINEE

+ Conflate shardstamps with the same index mod N

IIIIIIIIImnIIIIIIII

Causal Consistency



@ONMPRESSING TIMES TAMESE

ERRUC TURAL COMPRESSIE

 Conflate shardstamps with the same index mod N

EENPRESOING TIMES TARMIESS

ERRUCTURAL COMPRESSIES

« Use loosely synchronized rather than logical clocks

False dependencies

EENPRESOING TIMES TARMIESS
IEPFORAL COMPRESSSIE

+ False dependecies arise when recent and
old timestamps are conflated

v Use high resolution to track recent updates

v Conflate the rest!
Catchall

3989(3880|3873|3642 o Shardstamps
16K Shards
R ' 18151 1571 0.01% False
166

Shardstamps

dependencies

Fewer false dependencies: decouples staleness
from number of writes on each shard

@ U5A1 CONSISTENGRS

PESARD TO PROGRAM AGAINSEE

e lack of coordination:

» allows conflicting writes to execute concurrently

» leads states to diverge

+ Merging is hard:

» requires knowledge of application semantics

* Conflicting writes are intrinsic to ALPS applications
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« Not about preventing anomalies

« About how to provide system support for
efficiently resolving anomalies

MR. PRUNT'S WIKIPEDIA

mage Image

Europe N

MIEE T MR PRGNS

S CE UPDATES CONEERNES

Image

Content

Image

Europe ON)




FOE TOO, CONCURRENFRSS @i RLIE READSZSiGs
W DATES CONTENER SIND UPDATES REFERENGES

Europe N Europe ON)

e E READS @IS
e UPDATES IMAEIS
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INCONSISTENT FINAL SRS

Content

References

A s
AN )
References

Europe N

A vWOULD PRUNTSSZSNE
@realdolandprunt Y

» Syntactic conflict resolution is sad

» can't handle semantic conflicts e et

» creates the Potemkin abstraction™ of a
sequential view

* Lack of cross-object semantics is a
disaster

» asingle write-write conflict can affect the References
entire system state

1S MERGING FARIEE

Conter Content Bob

Ima’g‘e

> X T’:\
2 2 8 Dave

vy £ B References
Charlie #

» Conflicts hinge on semantics
« Conflicts are indirect




TARDIS

Crooks et al, SIGMOD ‘1 6

If you can't hide conflicts

from applications, make
them truly visible!

FlUEASIEVIG |
@O | OCAL BRANGES

* Local conflicts handled through locking/rollback

* TARDIS branches-on-conflict locally for performance!

P HATWAS

TOTALLY
WICKEDI

== VY ORED
ECCORDING TOGIHE

* Branch-on-conflict .

» conflicts create distinct branches

* Branch Isolation Allce

» branches track linear evolution
Charlle

« Atomically merge branches (not

objects!) when desired

» expose fork/merge points

FlUEASIEVIG |
@O | OCAL BRANGES

* Local conflicts handled through locking/rollback

* TARD:IS branches-on-conflict locally for performance

P HATWAS

TOTALLY
WICKEDI

+ No increase in complexity as

» abstraction of sequential store not preserved end-to-end

» applications already built to handle merges



