
GREAT  WITHIN 
DATACENTERS!

…where, besides, it may be ok to 
assume more of the network 

D. Ports et al.
Designing distributed systems unisng approximate synchrony in datacenter networks
NSDI ‘15

TAKING STOCK
• We can define a strong notion of correctness for 

concurrent objects

• We can use consensus to achieve it in a 
distributed setting

‣ Impossible? HA!  Nothing   is impossible!

TAKING STOCK
• We can define a strong notion of correctness for 

concurrent objects

• We can use consensus to achieve it in a 
distributed setting

‣ Impossible? HA!  Nothing   is impossible!
†Exceptions include:
✓ cappuccino after lunch or dinner
✓ actually, asynchronous consensus
✓ England beating Germany at football

†

… BUT WHAT ABOUT GEO-
REPLICATED SYSTEMS?



THE CAP DILEMMA
Consistency

Partition
ToleranceAvailability

for updates

linearizability

Eric Brewer’s CAP Theorem
“You can have at most two of C, A, and 

P for any shared data system”

WHAT DOES         MEAN?
C

A P

Werner Vogels, CTO Amazon
“An important observation is that in larger 

distributed-scale systems, network partitions are a 
given; therefore, consistency and availability 
cannot be achieved at the same time.”

http://www.allthingsdistributed.com/2008/12/eventually_consistent.html 

Farewell consistency, we hardly knew ye… 

W e a k
C

on s i te ncy
s

WHAT DOES         MEAN?
C

A P

“No system where P is possible can at 
all times guarantee both C and A”

i.e.

if your network is highly reliable (and fast), so that 
P is extremely rare, you can aim for both C and A

Google Spanner



W e a k
C

on s i ts e ncy

GEO-REPLICATED SYSTEMS
• Facebook, Twitter,  Amazon aim 

for ALPS
‣ Availability
‣ low Latency
‣ Partition tolerance
‣ Scalability

• What about consistency?
‣ Tension (you guessed it) 

between performance and 
ease of programming

EVENTUAL CONSISTENCY
• Replicas are guaranteed to converge
‣ updates performed at one replica are eventually seen 

by all others

‣ if no more updates,  replicas eventually reach the same 
state

If no new updates are made to an object, eventually 
all accesses will return its last updated value

GOSSIP
• In each round, a 

replica exchanges 
what it knows with 
another replica chosen 
uniformly at random

• Like an epidemic, it is 
robust and efficient

• “Infection” completes 
in  O(log n) rounds
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WHO’S USING EC?
• Domain Name Service (DNS)

• Facebook

• Amazon

• Twitter

• …

• Bayou (1995)

BAYOU
• Replicas keep ordered log 

of updates reflected in their 
state

• Gossip entries in their log

• If no more updates, logs 
(states) eventually converge

• But Bayou gives you more:

“If the log of Ri 
contains an update 

first performed on Rj, 
then the log of Ri 

also contains all the 
writes accepted by Rj 

prior to w.”

If a replica sees an 
update w, it has seen all 

updates that causally 
precede w!

Terry et al, SOSP ‘95

CAUSAL CONSISTENCY
Updates that are causally related should be seen by all replicas 

in the same order.  Concurrent updates may be seen by 
different replicas in different orders (Hutto & Ahamad, 1990)

Two operations a and b are causally related (a    b) if 

1.  The same client executes first a then b
2.  b reads the value written by a
3. There exists an operation a’ such that a    a’ and a’    b 

WHY 
CAUSAL CONSISTENCY?

1. meditates unspeakable crime
2. defriends me (update 1) 
3. posts selfie (update 2) while 

engaging in unspeakable crime

2

1

1. Receives selfie (update 2) then 
defriend request (update 1)

2. Whoops.



SEQUENTIALLY CONSISTENT?
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Does not meet the 
sequential specification!



CAUSAL CONSISTENCY
IN BAYOU

• When replica Ri receives an 
update from a client, it 
assigns to it a timestamp 
(logical timei, i) 

• Each replica Ri maintains a 
version vector Ri.V[ ]
‣ Ri.V[j] = highest timestamp 

of any write logged by Rj 
and known to Ri

• Replicas learn which updates 
they need to exchange by 
comparing version vectors!
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BUT DOES IT SCALE?
• Datacenters have thousands of  nodes…

1. Ginormous version vectors!

2. Log requires one serialization point per datacenter
✓ either causal dependencies only exist between 

keys stored on a single node

✓ or some node must serialize across all nodes

COPS: CLUSTER OF ORDER 
PRESERVING SERVERS

• Many clients, few datacenters

Loyd et al., 
SOSP ‘11

Key k

F C

B

D

A

G

E

Hash key and 
place on ring

Next node 
clockwise is in 

charge

COPS: CLUSTER OF ORDER 
PRESERVING SERVERS Loyd et al., 

SOSP ‘11

• Many clients, few datacenters

• Consistent hashing to partition 
the keys
‣ in each partition a “primary” node 

responsible for key
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COPS: CLUSTER OF ORDER 
PRESERVING SERVERS

• Many clients, few datacenters

• Consistent hashing to partition 
the keys
‣ in each partition a “primary” node 

responsible for key

• Each datacenter is linearizable
‣ low latency, “no” partitions

Loyd et al., 
SOSP ‘11

COPS: CLUSTER OF ORDER 
PRESERVING SERVERS

• Many clients, few datacenters

• Consistent hashing to partition 
the keys
‣ in each partition a “primary” node 

responsible for key

• Each datacenter is linearizable
‣ low latency, “no” partitions

• Get/Put operations execute at a 
local datacenter, and then 
asynchronously replicated

Loyd et al., 
SOSP ‘11

TOWARDS SCALABLE 
CAUSAL CONSISTENCY

• Replace serialization with distributed 
verification

• On get,  returned <version, value> is 
stored in the client’s context
‣ In principle, context includes all values previously read 

or written in client’s session and what they depend on! z4
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ACADEMIC SYSTEMS 
EXPLORING CAUSAL CONSISTENCY

• COPS (SOSP ’11)

• Bolt-On (SIGMOD ’13)

• Chain Reaction (Eurosys 
’13)

• Eiger (NSDI ’13)

• Orbe (SOCC ’13)

• GentleRain (SOCC ’14)

• Cure (ICDCS 16)

• Tardis (SIGMOD ’16)

• Saturn (Eurosys ’17)
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INDUSTRIAL SYSTEMS  
USING CAUSAL CONSISTENCY

No, seriously now…………………………….
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INDUSTRIAL SYSTEMS  
USING CAUSAL CONSISTENCY

No, seriously now…?
SLOWDOWN CASCADES

What causal 
systems assume

Reality 
at scale

Slowdown 
cascade

Datacenter A Datacenter B

Replicated and sharded storage for a social network

Datacenter A

W1

Re
ad

 (W
1)

W2

W
3

Writes are causally ordered
W1        W2        W3     

Datacenter B



Datacenter A
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Current causal systems enforce causal consistency as an invariant

Datacenter BBuffered

Buffered Applied ?W2

Applied ?W1

Datacenter A

W1

Re
ad

 (W
1)

W2

W
3

Alice’s advisor unnecessarily waits for Justin Bieber’s 
update despite not reading it

Delayed

Slowdown Cascade

Datacenter BBuffered

Buffered Applied ?W2

Applied ?W1

SLOWDOWN CASCADES 
IN EIGER (NSDI ‘13)

Buffers for replicated 
writes grow out of 

control
OCCULT
Observable Causal Consistency Using Lossy Timestamps

Mehdi et al, NSDI ‘17



OCCULT
Observable Causal Consistency

OBSERVABLE CAUSAL 
CONSISTENCY

• Causal Consistency
each client observes a monotonically non decreasing 

set of updates (including its own) in an order that 
respects potential causality between operations

Instead of a causally 
consistent data store, 

implement a data store 
that appears to clients 

indistinguishable from one

Causal

How can I guarantee clients observe 
a causally consistent datastore ?

Datacenter A Datacenter B



Master

Writes accepted only by master shards and then 
replicated asynchronously and in-order to slaves  
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Shardstamp

Each shard keeps track of a shardstamp 
which counts the writes it has applied

8 8
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Shardstamp

Causal timestamp: vector of shardstamps 
identifying the state client knows about
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Write protocol: causal timestamps stored with 
objects to propagate dependencies 

26

00

Client 1

Client 2

Client 3

34

5

0

88



W(x)

Slave

Slave

Master
Datacenter B

Master

Datacenter A

Master

Slave

7

4

7

4

Shardstamp

Write protocol: causal timestamps stored with 
objects to propagate dependencies 

26

00

Client 1

Client 2

Client 3

234

5

0

88

x 234
Slave

Slave

Master
Datacenter B

Master

Datacenter A

Master

Slave

7

4

7

4

Shardstamp

Write protocol: causal timestamps stored with 
objects to propagate dependencies 

26

00

Client 1

Client 2

Client 3

234

5

0

88

x 234

8

88

8

8

Slave

Slave

Master
Datacenter B

Master

Datacenter A

Master

Slave

4

7

4

Shardstamp

Read protocol: always safe to read from the Master
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Later writes reflect causal 
timestamp of read object
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Replication: As in eventual consistency, asynchronous, 
unordered writes are applied immediately
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Replication: Slave increment its shardstamp using 
causal timestamp of replicated write
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Read protocol: Clients run consistency 
checks when reading from slaves
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Stale!

A TIMESTAMP! 
MY KINGDOM FOR A TIMESTAMP!

• What happens to causal timestamps at scale?

‣ datacenters have tens of thousands of shards…

COMPRESSING TIMESTAMPS

• Conflate shardstamps with the same index mod N

A FAIRY TALE ENDING?

Linearizability Eventual consistency

Causal Consistency



COMPRESSING TIMESTAMPS:
STRUCTURAL COMPRESSION

• Conflate shardstamps with the same index mod N

1000 13 92

1000

False dependencies

COMPRESSING TIMESTAMPS: 
STRUCTURAL COMPRESSION

• Use loosely synchronized rather than logical clocks

Fewer false dependencies: decouples staleness 
from number of writes on each shard

COMPRESSING TIMESTAMPS: 
TEMPORAL COMPRESSION

166

• False dependecies arise when recent and 
old timestamps are conflated

✓ Use high resolution to track recent updates

✓ Conflate the rest!

4000 3989 3880 3873 3642

Catchall

1789 44 1815 1571 *

Shardstamps

Shard Ids 0.01%

4

16K

Shardstamps

Shards

False 
dependencies

CAUSAL CONSISTENCY
IS HARD TO PROGRAM AGAINST!
• Lack of coordination:

‣ allows conflicting writes to execute concurrently

‣ leads states to diverge

• Merging is hard:

‣  requires knowledge of application semantics

• Conflicting writes are intrinsic to ALPS applications



IT’S THE JOURNEY…

• Not about preventing anomalies

• About how to provide system support for 
efficiently resolving anomalies

MEET MR. PRUNT

MR. PRUNT’S WIKIPEDIA
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BOB TOO, CONCURRENTLY, 
UPDATES CONTENT
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INCONSISTENT FINAL STATE
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WHY IS MERGING HARD?

Content

References

Image

Content

• Conflicts hinge on semantics
• Conflicts are indirect

Alice

Charlie

Bob

Dave

• Syntactic conflict resolution is sad
‣ can’t handle semantic conflicts

‣ creates the Potemkin abstraction™ of a 
sequential view

• Lack of cross-object semantics is a 
disaster
‣ a single write-write conflict can affect the 

entire system state

Content

References

Image

Content

WHAT WOULD PRUNT SAY?
@realdolandprunt



TARDIS

If you can't hide conflicts 
from applications, make 

them truly visible!

Crooks et al, SIGMOD ‘16

Charlie David

THE WORLD 
ACCORDING TO GIT?

• Branch-on-conflict
‣ conflicts create distinct branches

• Branch Isolation
‣ branches track linear evolution

• Atomically merge branches (not 
objects!) when desired
‣ expose fork/merge points

Alice Bob

PLEASE VISIT 
OUR LOCAL BRANCH

• Local conflicts handled through locking/rollback 

• TARDiS branches-on-conflict locally for performance!

PLEASE VISIT 
OUR LOCAL BRANCH

• Local conflicts handled through locking/rollback 

• TARDiS branches-on-conflict locally for performance

• No increase in complexity as
‣ abstraction of sequential store not preserved end-to-end
‣ applications already built to handle merges


