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Two great tastes that go great together

PL and Crypto
Case studies in their combination



Cryptography

� Original focus: data security
� Expanded to computation security
◦ Homomorphic encryption
◦ Secure Multi-party computation
◦ Authenticated data structures
◦ Zero-knowledge proofs
◦ Oblivious RAM
◦ …



Programming Languages 

� Originally just for writing programs
� Expanded to help ensure programs are 
◦ Correct
◦ Efficient
◦ Secure
◦ Maintainable
◦ …

� In a variety of domains



Crypto Reasoning

� Crypto has developed several techniques 
for reasoning about security in the 
presence of a (bounded) adversary

� Reasoning is often done per application 
(a.k.a. construction)

� Use a simple model of computation to 
make reasoning easier
◦ Turing machines, boolean circuits, etc.



PL Reasoning

� PL focuses on per-language reasoning
◦ Type system that ensures all programs P have 

property Q
◦ Program analysis that ensures programs P 

have no flaws of class B

� PL mathematical semantics highly 
developed for expressing realistic and 
accurate models of behavior



Idea: Bring Them Together

� Start with a crypto idea
� Broaden and strengthen it by embedding 

it in a programming language
◦ Prove security of all programs in the language, 

not just a particular one
◦ Optimize the performance of all programs
� Taking advantage of finer-grained, PL-style semantic 

reasoning



This talk: Two Examples
� Privacy-preserving outsourced 

computation
◦ Generalize use of Oblivious RAM to 

strengthen security and (greatly) optimize 
performance

� Integrity-preserving outsourced data 
management
◦ Generalize idea underlying Merkle trees to 

more optimized data structures



Memory-Trace Oblivious 
Program Execution 

Joint work with Chang Liu,Austin Harris, Martin 
Maas, MohitTiwari, Elaine Shi



Outsourcing computation

Alice Bob

Code 
and data Code and 

data
Result

Security goal
� Privacy: Bob 

cannot learn 
about the input 
or output of the 
computation

Bob is honest but 
curious – will snoop 
but won’t corrupt



Challenge: Physical access

� The cloud provider has physical access to 
the machine running the computation

CPU Memory

code datacode data

address

data

Bus

Recent work has focused 
on remote attackers or 
software-based attackers 
running on the same 
hardware



Solution(?): Encrypted data/code

� Use a secure co-processor (SC) to encrypt 
code and data

CPU
Memory

code data

address

BusSC
Code (encrypted)

Data (encrypted)

Potential source of 
information

Data
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Access pattern is a side channel

� It turns out that the address trace alone
can leak private data
◦ For example, prior work has shown that the 

control flow graph can be inferred from it

� Two sources of leakage
◦ The pattern of addresses
◦ The total number of memory events



Access pattern is a side channel

� Program

� a[x]:=s

� Input: x=1, s=2
� Memory bus

read(x, 1)
read(s, 2)
write(a+1, 2)

Purple variables are secret
Red values are encrypted

Information 
Leakage!
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Variables accessed leak info

� Program

if(s) then
x:=1

else
y:=1

� Input: s=1
� Memory bus

read(s, 1)
true branch:

write (x, 1)
false branch:

write (y, 1)

Purple variables are encrypted

Information 
Leakage!
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Instructions fetched leak info

� Program

1: if(s) then
2: x:=1
3: else
4: x:=2

� Input: s=1
� Memory bus

read(s, 1)
true branch:

fetch line 2
false branch:

fetch line 4

Purple variables are encrypted

Information 
Leakage!

15



Oblivious RAM (ORAM)

� A primitive to hide RAM access patterns
◦ Due to Goldreich and Ostrovsky (STOC’87)
◦ Reads cannot be distinguished from writes
◦ The memory address cannot be distinguished

� Practical implementations now exist
◦ E.g., Path ORAM (CCS’13) by Stefanov et al.
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Architecture with ORAM

CPU 
Memory

Bus
Code (in ORAM)

Data (in ORAM)
Data

address

17

Addresses now 
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Controller

Encryption 
Module
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ORAM drawbacks

� Performance
◦ ORAM accesses are O(poly-log N) where N 

is the size of the memory bank
� Normal accesses O(1)

◦ N can be large for many cloud computations

� Security
◦ Does not protect leaks via the length of the 

address trace
� “Padding out” to a fixed length is impractical



Can we do better?

ORAM

Nearly
Secure

Inefficient

Normal 
Program

Insecure

Efficient

Tradeoff

Secure

Efficient
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PL to the rescue!

� Use program analysis (a type system) to

◦ Optimize the use of ORAM based on the 
program’s semantics
� Use only where necessary, not by default

◦ Reason about the influence of secret data 
on the length of the address trace

20



Results
� Formal notion of memory-trace oblivious 

(MTO) execution
◦ Like noninterference, but applied to a physical 

attacker with access to the memory trace
� Formal language and type system
◦ Proved that type-correct programs are MTO

� Prototype compiler
◦ Performs transformations and type inference to 

establish MTO on secure programs
� Hardware implementation
◦ Demonstrate significant speedups compared to naïve 

ORAM allocation
Memory Trace Oblivious Program Execution, CSF 2013, Winner of 2013 NSA 
Best Scientific Cybersecurity Paper Competition
GhostRider: A Hardware-Software System for Memory Trace Oblivious 
Computation,  ASPLOS 2015 (Best paper).



Assume: Program not secret

� Then memory access trace may reveal no 
addition information when …

� Certain data stored in DRAM
◦ With encryption, or not
� Eliminates ORAM overhead entirely

� Data stored in multiple ORAM banks 
◦ Reduces impact of logarithmic factor



Examples

� Program 1
a[3]:=0

� Program 2
for i=1 to 10

a[i]=s

� Program 3
b[s]=1
c[s]=2

� a[] can be stored in normal DRAM 
since it contains no secret data

� a[] stored in encrypted DRAM since 
access pattern is predictable (i is non-
secret)

� b[] and c[] must be in ORAM, since s is 
secret, but can be stored in separate 
ORAM banks 

Red variables must be stored in ORAM
Blue variables can be encrypted and stored in DRAM 23



Hybrid Architecture
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24

Encryption 
Module

ORAM 
Controller

SC

CPU



Formal language

� Formalize simple imperative source 
language and its semantics



Big Step Semantics

� M is a memory
� S is a program
� t is a trace event
� M’ is the resulting memory



Big Step Semantics

� Semantics has two novelties
◦ Variables in DRAM, and in ORAM banks
◦ Execution steps may produce events t
� Read(x,n) – read variable x, has value n
� Write(x,n) – write n to variable x
� o – read or write to ORAM bank o
� Fetch(p) – fetch instruction at address p



Memory Trace Obliviousness

� MTO: Given a program S and two 
indistinguishable memories M1 and M2
◦ Running S under M1 produces the same 

trace as running S under M2

� Def. of memory indistinguishability
◦ All variables allocated in the same banks
◦ DRAM variables have same values in both
◦ ORAM variables may have different values



Type System
� Extends standard security type system with 

a trace effect T
◦ Static abstraction of possible run-time trace
◦ Trace effects have notion of equivalence ~
� Only traces whose lengths we can statically reason 

about are potentially equivalent

� Judgment Γ, l ⊢ S; T states
◦ Program S is type correct having trace effect T

when variables have types given by Γ and in 
context l (the “pc label”)



Type Rule for If

� if (e) then S1 else S2 produces trace T 
under environment Γ only if
◦ S1 produces trace T1
◦ S2 produces trace T2
◦ e mentions secret variables, or the context 

does, implies T1 ~ T2, in which case T = T1
� Else T = T1+T2 (“T1 or T2”)

◦ (Plus some other details I’m skipping)



� if (e) then S1 else S2 produces trace T 
under environment Γ only if
◦ S1 produces trace T1
◦ S2 produces trace T2
◦ e mentions secret variables, or the context 

does, implies T1 ~ T2, in which case T = T1
� Else T = T1+T2 (“T1 or T2”)

◦ (Plus some other details I’m skipping)

Type Rule for If



Type Rule for Loops

� while (e) do S produces trace 
loop(T1,T2) under environment Γ only if
◦ e produces trace T1
◦ S produces trace T2
◦ e mentions no secret variables, nor does 

the context

� Hence: No secret variables in loop guards
◦ No loops in secure conditionals



� while (e) do S produces trace 
loop(T1,T2) under environment Γ only if
◦ e produces trace T1
◦ S produces trace T2
◦ e mentions no secret variables, nor does 

the context

� Hence: No secret variables in loop guards
◦ No loops in secure conditionals

Type Rule for Loops



Controlling leaks

while (i < H) do S 
◦ Can be rewritten to be

while (i < N) do 
if (i < H) then S else equiv(S)

� Where 
◦ H is secret, but N is a public constant
◦ equiv(S) is an inert code sequence that 

produces the same sequence as S



Security

� Theorem: If Γ, l ⊢ S; T then S is memory-
trace oblivious

� Proof by standard techniques (induction 
on derivations)
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Putting it all together



If rule, for assembly



While rule, for assembly



Non-Secure
Baseline All data in DRAM

One ORAM All data in one ORAM

GhostRider Optimized version utilizing
the hybrid memory model

• We compare One ORAM and GhostRider to 
see the improvement from the compiler
• measure the overhead of One ORAM and 

GhostRider over the non-secure baseline
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FPGA-based evaluation
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patterns heavily depend on the 
input, speedup is small 40

Lower bar ⇒
better 
performance 

Result: up to 10x faster than one ORAM



Opening the Black Box

� Ghostrider treats ORAM as a primitive
◦ Part of the trusted computing base (TCB)
◦ Full flexibility costs some performance
� Supports random access

� We are now working on a language in 
which ORAM can be implemented
◦ Less to trust
◦ Permits efficient oblivious data structures
◦ Key feature: Proper use of randomness
◦ http://www.cs.umd.edu/~mwh/papers/darais17obliv.html



Summary

� Goal: Outsourced computation that is 
private despite physical snooping
◦ And gets good performance

� Solution: Memory-trace Oblivious 
program execution enabled by 
Program analysis and Oblivious RAM
◦ HW/SW co-design
◦ Designed/validated using formal semantics of 

PL: type systems and operational semantics



Next: ADS

� (switch decks)



Other PL/crypto connections

� Techniques (or PLs) for analyzing/verifying 
implementations of crypto
◦ E.g., side-channel freeness

� Verified crypto-style proofs of security
◦ Adopt PL ideas of contextual equivalent and 

full abstraction
◦ Using PL-style automation (theorem proving)

� Real/ideal paradigm of security
◦ Matches specification/implementation in PL



Further reading
� The Synergy between Programming 

Languages and Cryptography
◦ http://www.pl-enthusiast.net/2014/12/17/synergy-

programming-languages-cryptography/

� Formal Reasoning in PL and Crypto
◦ http://www.pl-enthusiast.net/2014/12/23/formal-

reasoning-pl-crypto/

� What is PL research and how is it useful?
◦ http://www.pl-enthusiast.net/2015/05/27/what-is-

pl-research-and-how-is-it-useful/



Broader Message

� Crypto is cool, PL is cool
� Each has something to offer the other: 
◦ Result is better than both!

� Other related work from our group
◦ PL-optimized secure multiparty computation
� ASPLOS’15, IEEE S&P’14 x 2, PLAS’13, PLAS’12
� and works in progress

http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=14492


