
Michael Hicks, Professor of CS @ UMD

Two great tastes that go great together

PL and Crypto
Case studies in their combination

Cryptography

� Original focus: data security
� Expanded to computation security
◦ Homomorphic encryption
◦ Secure Multi-party computation
◦ Authenticated data structures
◦ Zero-knowledge proofs
◦ Oblivious RAM
◦ …

Programming Languages

� Originally just for writing programs
� Expanded to help ensure programs are
◦ Correct
◦ Efficient
◦ Secure
◦ Maintainable
◦ …

� In a variety of domains

Crypto Reasoning

� Crypto has developed several techniques
for reasoning about security in the
presence of a (bounded) adversary

� Reasoning is often done per application
(a.k.a. construction)

� Use a simple model of computation to
make reasoning easier
◦ Turing machines, boolean circuits, etc.

PL Reasoning

� PL focuses on per-language reasoning
◦ Type system that ensures all programs P have

property Q
◦ Program analysis that ensures programs P

have no flaws of class B

� PL mathematical semantics highly
developed for expressing realistic and
accurate models of behavior

Idea: Bring Them Together

� Start with a crypto idea
� Broaden and strengthen it by embedding

it in a programming language
◦ Prove security of all programs in the language,

not just a particular one
◦ Optimize the performance of all programs
� Taking advantage of finer-grained, PL-style semantic

reasoning

This talk: Two Examples
� Privacy-preserving outsourced

computation
◦ Generalize use of Oblivious RAM to

strengthen security and (greatly) optimize
performance

� Integrity-preserving outsourced data
management
◦ Generalize idea underlying Merkle trees to

more optimized data structures

Memory-Trace Oblivious
Program Execution

Joint work with Chang Liu,Austin Harris, Martin
Maas, MohitTiwari, Elaine Shi

Outsourcing computation

Alice Bob

Code
and data Code and

data
Result

Security goal
� Privacy: Bob

cannot learn
about the input
or output of the
computation

Bob is honest but
curious – will snoop
but won’t corrupt

Challenge: Physical access

� The cloud provider has physical access to
the machine running the computation

CPU Memory

code datacode data

address

data

Bus

Recent work has focused
on remote attackers or
software-based attackers
running on the same
hardware

Solution(?): Encrypted data/code

� Use a secure co-processor (SC) to encrypt
code and data

CPU
Memory

code data

address

BusSC
Code (encrypted)

Data (encrypted)

Potential source of
information

Data

11

Access pattern is a side channel

� It turns out that the address trace alone
can leak private data
◦ For example, prior work has shown that the

control flow graph can be inferred from it

� Two sources of leakage
◦ The pattern of addresses
◦ The total number of memory events

Access pattern is a side channel

� Program

� a[x]:=s

� Input: x=1, s=2
� Memory bus

read(x, 1)
read(s, 2)
write(a+1, 2)

Purple variables are secret
Red values are encrypted

Information
Leakage!

13

Variables accessed leak info

� Program

if(s) then
x:=1

else
y:=1

� Input: s=1
� Memory bus

read(s, 1)
true branch:

write (x, 1)
false branch:

write (y, 1)

Purple variables are encrypted

Information
Leakage!

14

Instructions fetched leak info

� Program

1: if(s) then
2: x:=1
3: else
4: x:=2

� Input: s=1
� Memory bus

read(s, 1)
true branch:

fetch line 2
false branch:

fetch line 4

Purple variables are encrypted

Information
Leakage!

15

Oblivious RAM (ORAM)

� A primitive to hide RAM access patterns
◦ Due to Goldreich and Ostrovsky (STOC’87)
◦ Reads cannot be distinguished from writes
◦ The memory address cannot be distinguished

� Practical implementations now exist
◦ E.g., Path ORAM (CCS’13) by Stefanov et al.

16

Architecture with ORAM

CPU
Memory

Bus
Code (in ORAM)

Data (in ORAM)
Data

address

17

Addresses now
obfuscated

ORAM
Controller

Encryption
Module

SC

ORAM drawbacks

� Performance
◦ ORAM accesses are O(poly-log N) where N

is the size of the memory bank
� Normal accesses O(1)

◦ N can be large for many cloud computations

� Security
◦ Does not protect leaks via the length of the

address trace
� “Padding out” to a fixed length is impractical

Can we do better?

ORAM

Nearly
Secure

Inefficient

Normal
Program

Insecure

Efficient

Tradeoff

Secure

Efficient

19

PL to the rescue!

� Use program analysis (a type system) to

◦ Optimize the use of ORAM based on the
program’s semantics
� Use only where necessary, not by default

◦ Reason about the influence of secret data
on the length of the address trace

20

Results
� Formal notion of memory-trace oblivious

(MTO) execution
◦ Like noninterference, but applied to a physical

attacker with access to the memory trace
� Formal language and type system
◦ Proved that type-correct programs are MTO

� Prototype compiler
◦ Performs transformations and type inference to

establish MTO on secure programs
� Hardware implementation
◦ Demonstrate significant speedups compared to naïve

ORAM allocation
Memory Trace Oblivious Program Execution, CSF 2013, Winner of 2013 NSA
Best Scientific Cybersecurity Paper Competition
GhostRider: A Hardware-Software System for Memory Trace Oblivious
Computation, ASPLOS 2015 (Best paper).

Assume: Program not secret

� Then memory access trace may reveal no
addition information when …

� Certain data stored in DRAM
◦ With encryption, or not
� Eliminates ORAM overhead entirely

� Data stored in multiple ORAM banks
◦ Reduces impact of logarithmic factor

Examples

� Program 1
a[3]:=0

� Program 2
for i=1 to 10

a[i]=s

� Program 3
b[s]=1
c[s]=2

� a[] can be stored in normal DRAM
since it contains no secret data

� a[] stored in encrypted DRAM since
access pattern is predictable (i is non-
secret)

� b[] and c[] must be in ORAM, since s is
secret, but can be stored in separate
ORAM banks

Red variables must be stored in ORAM
Blue variables can be encrypted and stored in DRAM 23

Hybrid Architecture

MemoryBus

DRAM
Controller

Visible but
not secret

address

data

address

data

address

data

ORAM%

ORAM&

…

Normal DRAM

Encrypted DRAM

24

Encryption
Module

ORAM
Controller

SC

CPU

Formal language

� Formalize simple imperative source
language and its semantics

Big Step Semantics

� M is a memory
� S is a program
� t is a trace event
� M’ is the resulting memory

Big Step Semantics

� Semantics has two novelties
◦ Variables in DRAM, and in ORAM banks
◦ Execution steps may produce events t
� Read(x,n) – read variable x, has value n
� Write(x,n) – write n to variable x
� o – read or write to ORAM bank o
� Fetch(p) – fetch instruction at address p

Memory Trace Obliviousness

� MTO: Given a program S and two
indistinguishable memories M1 and M2
◦ Running S under M1 produces the same

trace as running S under M2

� Def. of memory indistinguishability
◦ All variables allocated in the same banks
◦ DRAM variables have same values in both
◦ ORAM variables may have different values

Type System
� Extends standard security type system with

a trace effect T
◦ Static abstraction of possible run-time trace
◦ Trace effects have notion of equivalence ~
� Only traces whose lengths we can statically reason

about are potentially equivalent

� Judgment Γ, l ⊢ S; T states
◦ Program S is type correct having trace effect T

when variables have types given by Γ and in
context l (the “pc label”)

Type Rule for If

� if (e) then S1 else S2 produces trace T
under environment Γ only if
◦ S1 produces trace T1
◦ S2 produces trace T2
◦ e mentions secret variables, or the context

does, implies T1 ~ T2, in which case T = T1
� Else T = T1+T2 (“T1 or T2”)

◦ (Plus some other details I’m skipping)

� if (e) then S1 else S2 produces trace T
under environment Γ only if
◦ S1 produces trace T1
◦ S2 produces trace T2
◦ e mentions secret variables, or the context

does, implies T1 ~ T2, in which case T = T1
� Else T = T1+T2 (“T1 or T2”)

◦ (Plus some other details I’m skipping)

Type Rule for If

Type Rule for Loops

� while (e) do S produces trace
loop(T1,T2) under environment Γ only if
◦ e produces trace T1
◦ S produces trace T2
◦ e mentions no secret variables, nor does

the context

� Hence: No secret variables in loop guards
◦ No loops in secure conditionals

� while (e) do S produces trace
loop(T1,T2) under environment Γ only if
◦ e produces trace T1
◦ S produces trace T2
◦ e mentions no secret variables, nor does

the context

� Hence: No secret variables in loop guards
◦ No loops in secure conditionals

Type Rule for Loops

Controlling leaks

while (i < H) do S
◦ Can be rewritten to be

while (i < N) do
if (i < H) then S else equiv(S)

� Where
◦ H is secret, but N is a public constant
◦ equiv(S) is an inert code sequence that

produces the same sequence as S

Security

� Theorem: If Γ, l ⊢ S; T then S is memory-
trace oblivious

� Proof by standard techniques (induction
on derivations)

GhostRider Compiler
Secure Type

CheckerOptimizer

Assembly
Code

Validate
Security

Secure Processor

DRAM
Control

ler
…

Scratchpad
ERAM
Control

ler

ORAM
1

Control
ler

ORAM
𝑛

Control
lerC

on
ve

y
H

C
2

Pl
at

fo
rm

Source
program

36

Putting it all together

If rule, for assembly

While rule, for assembly

Non-Secure
Baseline All data in DRAM

One ORAM All data in one ORAM

GhostRider Optimized version utilizing
the hybrid memory model

• We compare One ORAM and GhostRider to
see the improvement from the compiler
• measure the overhead of One ORAM and

GhostRider over the non-secure baseline

39

FPGA-based evaluation

Sl
ow

do
w

n
w.

r.t
.

no
n-

se
cu

re
 b

as
el

in
e

Little overhead over non-
secure baseline for some
programs

For programs whose memory trace
patterns heavily depend on the
input, speedup is small 40

Lower bar ⇒
better
performance

Result: up to 10x faster than one ORAM

Opening the Black Box

� Ghostrider treats ORAM as a primitive
◦ Part of the trusted computing base (TCB)
◦ Full flexibility costs some performance
� Supports random access

� We are now working on a language in
which ORAM can be implemented
◦ Less to trust
◦ Permits efficient oblivious data structures
◦ Key feature: Proper use of randomness
◦ http://www.cs.umd.edu/~mwh/papers/darais17obliv.html

Summary

� Goal: Outsourced computation that is
private despite physical snooping
◦ And gets good performance

� Solution: Memory-trace Oblivious
program execution enabled by
Program analysis and Oblivious RAM
◦ HW/SW co-design
◦ Designed/validated using formal semantics of

PL: type systems and operational semantics

Next: ADS

� (switch decks)

Other PL/crypto connections

� Techniques (or PLs) for analyzing/verifying
implementations of crypto
◦ E.g., side-channel freeness

� Verified crypto-style proofs of security
◦ Adopt PL ideas of contextual equivalent and

full abstraction
◦ Using PL-style automation (theorem proving)

� Real/ideal paradigm of security
◦ Matches specification/implementation in PL

Further reading
� The Synergy between Programming

Languages and Cryptography
◦ http://www.pl-enthusiast.net/2014/12/17/synergy-

programming-languages-cryptography/

� Formal Reasoning in PL and Crypto
◦ http://www.pl-enthusiast.net/2014/12/23/formal-

reasoning-pl-crypto/

� What is PL research and how is it useful?
◦ http://www.pl-enthusiast.net/2015/05/27/what-is-

pl-research-and-how-is-it-useful/

Broader Message

� Crypto is cool, PL is cool
� Each has something to offer the other:
◦ Result is better than both!

� Other related work from our group
◦ PL-optimized secure multiparty computation
� ASPLOS’15, IEEE S&P’14 x 2, PLAS’13, PLAS’12
� and works in progress

http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=14492

