Privacy in the Year 2027

Vitaly Shmatikov
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rbes v New Posts *' Most Popular Lists Video Subscribe to Forbes

Sign up

12/18/2014 @ 9:00AM | 48,377 views

3 Baidu Announces Breakthrough In
- Speech Recognition, Claiming To
RobertHof Top Google And Apple

==

Baldu Deep Spen-L

g - New Posts *'

Bi-directional Recurrent
Neural Network
etwork (BDRNN) 2/19/2015 @ 1:06PM | 4,996 views

Microsoft's Deep Learning Project
¢ Outperforms Humans In Image
Michael Thomsen Recognition

Contributor

GT: spotlight
1: acoustic guitar

Images used to test Microsoft’s deep learning Al. Image via Microsoft.



deep learning revolution

Web News Videos Images Sh

What does this
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a privacy researcher?




2014

Users’ data Services

@ ~0a0n
0208 EB0
PEREERA0
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Threats
—Collection of sensitive personal data
—Anonymization and re-identification
—Inference attacks

—Side channels
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2020

Users’ data Machine learning Services

@ ~0enn
I ==
PERETRAC

R

Do trained models leak sensitive data?

Is it possible to train a ‘““good” model
while respecting privacy of training data?

Is it possible to keep the model itself private?

slide 6



Typical Task: Classification

Classification
result
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Perceptron (1957, Cornell)

400 pixel camera
Designed for image recognition

“Knowledge” encoded as
weights in potentiometers
(variable resistors)

Weights updated during learning
performed by electric motors
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Perceptron

activation
4 function

weights

slide



What Perceptron Can Learn

m : m Binary classifier,

linearly separable
patterns

slide 10



Feedforward Neural Networks




Activation Functions

Sigmoid / logistic: f(x) = | / (1-e)

~ Tanh: f(x) = tanh(x)

55555

RelLU: f(x)=max(x,0)

slide 12




Universal Approximation Theorem

* Multilayer perceptron with a single hidden layer
and linear output layer can approximate any
continuous function on a compact subset of R"
to within any desired degree of accuracy

— Under some assumptions about activation functions

slide 13



Why Deep Neural Networks

* Functions representable with a deep network
can require exponential number of hidden units
with a shallow (single hidden layer) network

* Piecewise linear networks (e.g., using ReLU) can
represent functions that have a number of
regions exponential in depth of network

— Capture repeated, mirroring, symmetric patterns in
the data

— Often better generalization

slide 14



Convolutional Neural Networks

Feature maps

Convolutions Subsampling Convolutions ~ Subsampling  Fully connected

slide 15



Example: Face Recognition




Parameter Training

w_11 w_21 W 3T

LSPRP X

wW_2j w_3k

Find parameters that minimize the classification error
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Loss Function
(Cost Function, Objective Function)

kit



Loss Function

* Measures the “cost” of fitting a model to data

* Examples:

— L? squared difference between model output and
known correct output (“‘ground truth™)

— L' absolute difference between model output and
Known correct output

— Cross-entropy between model output
(interpreted as probability) and correct output

slide 19



Measuring Accuracy

* Training dataset: model is “trained” to fit this

* Validation dataset: model is repeatedly tested
on this data during training

* Testing dataset: measure accuracy of a trained
model

Testing accuracy vs. training accuracy

slide 20



Parameter Training

slide 21



Parameter Training

slide 22



“Batch’” Gradient Descent

Step size
(“learning rate”)

!

Xntl = Xp — 7nVF(xn)
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Stochastic Gradient Descent

* Need to compute sum of n terms, n is large

* Sample instead of computing the full sum

— Example: train on 100 photos to compute an
estimate, then repeat and update the estimates

Repeat until an approximate minimum is reached:
- Pick a random sample of training examples
-Foriinl,2...n

0= w-1YQ; ()

slide 24



Gradient Descent with
Backpropagation

* Initialize weights w,

* Repeatedly apply gradient
descent:
Wiht1 = Wh =V, VE(Wn)

* Stop when validation
error is “small”
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Stochastic Gradient Descent with
Backpropagation

* Initialize weights w,

* Randomly shuffle dataset

* For each batch i calculate
gradient descent using
backpropagation and apply
Wht1 = Wi =V, VEi(Wn)

* Stop when validation error
is “small”

slide 26



Parameter Training using SGD

Gradient Desce A

VVVVV

slide 27



Parameter Training using SGD




Privacy!?

Sensitive data Machine learning

Medical images
Clinical records
Text documents
Personal photos
Retail purchases

slide 29



Fredrikson et al.

Model Inversion

Given an output of a machine learning

“unexpected attributes”

slide 30



Fredrikson et al.

Model Inversion in Action

given patient’s genome ...

#

Privacy breach:

What does this chart
measure!

iven patient’s warfarin dosage

3 ~~
0.75
Disclosure, Std. LR é
0.70 s
Disclosure, Private LR é
T 0.65
Mortality, Private LR g
, =
Mortality, Std. LR 0.60 2
s - A
1.0 5.0 20.0 100.0
€ (privacy budget)

... determine correct warfarin dosage
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Hitaj et al.

Deep Models under the GAN

Train a (differentially private)
model

Abadi et al. (CCS 2016)
0

““| Use adversarial
learning to generate
{ representatives of
every class

They look very similar to
training data...

Privacy is broken!? S0\ /
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Does Inference Breach “Privacy’™?

O
O
0° & waining set

slide 33



Recommended Reading

Frank McSherry.
“Statistical inference
considered harmful”

https://github.com/frankmcsherry/blog/blob/master/posts/2016-06- 1 4.md
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Privacy in Statistical Databases

Individuals Researchers

i . CUnited States™ | < grene
i . — e_nS'B‘,‘,Irg answers .

Large collections of personal information
* census data

* national security

* medical/public health

* social networks

* recommendation systems

* education
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Conflicting Goals

[ IUtiIity J [P"ivac?'}

Utility: release aggregate statistics
Privacy: 22? (intuition: individual information stays “hidden”)
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“Relax — it can only
see metadata.’

N_-ISE TO SIGNAL
RobCottingham.com



Slide credit: Adam Smith

Remove Obvious ldentifiers?

“Al recognizes blurred faces”
[McPherson Shokri Shmatikov ‘1 6]

—

[Gymrek McGuire Golan
Halperin Erlich ‘1 3]

[Pandurangan ‘14] ‘

*——"

Hospital
A

Hospital
B

=l

[Ganta Kasiviswanathan Smith ‘08] slide 38



Membership Inference Attacks

* Exact high-dimensional summaries allow an
attacker to test membership in a data set

[Homer et al. 2008]

— Caused US NIH to change data sharing practices
for genomic data

* Distorted high-dimensional summaries allow
an attacker to test membership in a data set

[Dwork et al. FOCS 2015]
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Homer at al. Attack

. ‘s 1)
Population—~ ~ Qut
. (product distribution) ~

) attributes , <4

to |1 L olo ot o o | Alice’s data
o |1 |o o o 1 | In”
people| - T T data  |° 7 " L...pfi Jo [0 [0 [0 [0 o [1 Jo
L1 To [o| Attack also works if

statistics are noisy/distorted
=72 [Dwork et al. 2015]

g

S~

Release exact column averages

“In”I
“out”
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Machine Learning as a Service

Google

Cloud Platform
aTS%,on e
we ICESH : ; _
Prediction API ] [ Training APl %

|

#lnput from Classification
users, apps ...

Sensitive!

Transactions, preferences,
online and offline behavior

slide 41



Exploiting Trained Models

Google

P Cloud Platform

amazon
webservices™

¢

Prediction API ] [ Training API j

[
Input from ‘ |

the training set Classification

Input not from  Clajfication
the training set .

recognize the difference

slide 42



ML Against ML

Google ... without knowing the
Cloud Platform .
specifics of the actual model!

amazon
webservices™

[ Prediction API ] [ Training API j

Train a model to... recognize the difference

slide 43



Training Attack Model

Target

using Shadow Models g
Shadow | Shadow Shadow |
Model | Model 2 *ee Model k | °

UOIIeDIISSE|D
uoIeDIISSE|D

es

UOIIeDIISSE|D

P,

IN  OUT IN  OUT IN  OUT

et

(

g
N

L

Train the attack model

to predict if an input was a member of the training set (in)
or a non-member (out)

slide 44



Training Data for Shadow Models

* Real: must be similar to training data of the
target model (drawn from same distribution)

* Synthetic: sample feature values from
(known) marginal distributions

* Synthetic: exploit target model Confidence of

target model’s
predictions

Sample from inputs classified by the

target model with high confidence
target’s
training inp#

input space

slide 45



Important Point

Confidence of
target model’s
predictions

target’s
training inp

[* Both “in” and “out” examples are drawn from this space }

Sample from inputs classified by the
target model with high confidence/\

input space

* It is not the case that attack model simply learns to say
that all inputs classified by the target model with high
confidence belong to its training dataset

slide 46



Synthesizing Shadow Training Data

Algorithm 1 Data synthesis using the target model

1: procedure SYNTHESIZE(class : ¢)

Hi”'CIimb the Space Of 2: X < RANDRECORD() D initilize a record randomly
. : . 3: 0
possible inputs to find those AR
classified by the target model S ke Fna |
. ) 6: for iteration = 1---iter, .. do
with high confidence ¥ < frarget(X) > query the target model
if y. > y then D accept the record
9: if y. > conf,,;, and ¢ = argmax(y) then
10 if rand() < y. then > sample
. return x > synthetic data
Sample from these inputs to end if
. . . end if
synthesize the training dataset * < x
for shadow models Ye ¢ Ye
. j<0
17: else
18: jei3+1
. . 19: if J > T€jmax then © many consecutive rejects
If many candidate inputs b mas(kmin, [£/2])
rejected by the target model, - A 0
: end i
re-randomize some features 2: end if
. 24: X +— RANDRECORD(X", k) b randomize k features
and tl’)’ agam 25: end for
26: return | > failed to synthesize

27: end procedure

slide 47



Membership Inference Attack

Input (data) Output (classes and confidence values)

airplane -—
automobile

ship ]

truck _

Was this image part of the training set!
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Google
Cloud Platform

amazon

webservices™
[ Prediction API ] Training API
Membership Inference | VVas this record in v
Attack the tra|n|ng set? Tl’alnlﬂg Set
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Cumulative Fraction of Classes

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Google -
- Amazon -------- "'
. Minimum Attack Accuracy onl : f
I 75% of classes §
0 0.2 0.4 0.6 0.8 1

Membership Inference Accuracy

{ Purchase Dataset — Classify Customers }
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Next Step: Reconstruction

Google

Cloud Platform

amazon
webservices™

INFER hidden parts

of the customer record Example: retail purchases or

Auxiliary information, . ,
mobile phone locations

public databases,

accidentally revealed data slide 51



Why Do These Attacks VWork!?

Google |

| Cloud Platfor |
amazon 1 .
webservices™ Ove I"ﬁtted .
f '

[ Prediction API \ Training API j

Membership Inference

S ——

Reconstruction
i \_
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Attack Success vs. Test-Train Gap

Aflack Precision

Allack Precision

Purchase Dataset, 10-100 Classes, Google, Membership Inference Attack

09

08

0.7

06

05

0.9

0.8

0.7

06

0.5

T T T T T T
poe———— $oemmmee 4 1o b0t o --0-|---0
BN EPEC S T o Loy
" :~ ".’ o0 i
S e Le Ltk
e e TRy
: 6 ° | i |
perecccas  pamm NE . SREEE M R — R ——
B AR i °
° | | i |
: fo----- : : g
| | b i |
| | ol ] ]
— — X T  — L. 10Ciasses ©
f RS | i 20 Classes  ©
oo, | ° ! | 50 Classes ©
i i °
0 0.1 0.2 03 0.4 0.5 0.6 0.7

Target Model {Train-Test) Accuracy Gap

Location Dataset, 30 Classes, Google, Membership Inference Attack

7 ! 1 T '
| e

e v:-------—Q--------Q---—----Q; -------- -.----.--‘ ----------
L e g °

= i DI S ) P S "

0o % .’ °
o °

: . ’ '

e e eeeee . TR - S R — T (I S
'@ !
| °

0 0.1 0.2 0.3 0.4 05 06 0.7

Target Model (Train-Test) Accuracy Gap

More overfitted

slide 53



Privacy: Learning:

Does the model leak Does the model
information about data generalize to data
in the training set? outside the training set?
O
O
5 © 00 ®e
O
- O OO :
O . 2 O
o O O e
O < o Overfitting is
O
00 O |training setf the common enemy
O @) @)
O

data universe



Generalizability Is Not Privacy

* Deep neural networks have huge
memorization capacity

* A well-generalized model can still leak
information about its training dataset

— Good test performance on the primary task does
not preclude good performance on another task
(e.g., membership inference or reconstruction)

slide 55



Does Inference Breach “Privacy’?

SCIENCE!

> O
O
O
O O
* OO ~ 09 PRIVACY
5 5 BREACH!
ONQ) O O [training set

OU @),

Privacy breach = risk of membership:

Gap between what can be inferred from the model
about a member of the training set and an
arbitrary input from the population

slide 56



Cumulative Fraction of Classes

09 F -
0.8 |

0.7 - ““““““““““ “““““““ membershlp

osb e

04 —
| Baseline

0.3 | (use statistics)

| Members of
[ Training Set

0.1 _ """" . ’o.: """""""""""""""""""""""""""""""""" ]
0 ; i . .
0 0.2 0.4 0.6 0.8 1
Accuracy (of inferring 60 features)
{ Purchase Dataset — Classify Customers — Google API j e




Future

* Modern machine learning is both a threat and
an opportunity for data privacy

* For once, privacy and utility are not in conflict:
overfitting is the common enemy

* Overfitted models leak training data

* Overfitted models lack predictive power

* Need generalizability and accuracy

slide 58



Utility

Privacy-preserving
machine learning

Privacy

slide 59



“Classical” Intuition for Privacy

* Dalenius (1977):"If the release of statistics S
makes it possible to determine the value [of
private information] more accurately than is
possible without access to S, a disclosure has
taken place”

— Privacy means that anything that can be learned
about a respondent from the statistical database
can be learned without access to the database

slide 60



Problems with Classical Intuition

* Popular interpretation: prior and posterior
views about an individual shouldn’t change
“too much”

— What if my (incorrect) prior is that every student
in this room has three arms?

* How much is “too much?”

— Can’t achieve cryptographically small levels of
disclosure and keep the data useful

— Users are supposed to learn unpredictable things
about the data

slide 61



Dwork et al.

Differential Privacy: Intuition

i; zl - ' i; L]

$ 2 A LA, g wz’g j[A ' AK)

%0 1 Ly, )
. local random
i local random coins i

coins

If you change or remove one person’s data,
distribution of outputs should not change much

slide 62



Dwork et al.

Differential Privacy

i~ L1 . |

—|

oA |,

Z5 j| A I AX)

Ly ) , L 1
: local random
i local random coins i

Dif]l‘er in one data point

coins

Definitiorl: A is g-differentially private if,

Neighboring databases
induce close
distributions on outputs

for allneighbors) x, X,

for all subsets S of outputs Measure of information leakage

Pr(A(x) €S) < 622 Pr(A(X) € S)
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Deployed Differential Privacy

a
[ -}

https://developer.apple.com/v
ideos/play/wwdc2016/709/

Differential privacy

BEBRRYnER
SEdlRERE
o BRENBRAR «

» Q¢ woace n

Webpage S

OnTheMap e LED Home Help and Documentation Reload Text-Only

©lap  Selection = Advanced = Results ® [ save [) Load [B} Feedback 4 Previous EXtent («) Hide Tabs
; - ) Hide ChartReport

Work Area Profile Analysis

enter your oun subitle @

~ Display Settings o

Characteristic Filter& Total
Yearo 2010

~ Map Controls & .
.

e m https://github.com/google/rappor
;hem:ja\ Overlay [/ View as | Pie Chart |~ ° °

oint Overtay [

Selection Outiine [/ Total Primary Jobs 5

[5]identify \ Zoom to Selection 2010 =

i Clear Overlays [ Animate Overlays

Count  Share

Total Primary Jobs 816,566 100.0%
~ Report/Map Outputs &

Worker Age

1=/ Retailed Report 2010

&Export Geograph Count  Share

&Print Chart/Map WAge 29 or younger 16282 19.9%

- E\Aﬁe 301054 490348 60.1%
~ Legends —

(+Change Settings

US Census Bureau (goal: full census in 2020)
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Laplace Mechanism

Database

* Intuition: f(x) can be released accurately when f is insensitive
to individual entries x|, ... X,

* Global sensitivity GS; = maX,ighbors ¢ f(X) = (< I,

— Example: GS = |/n for sets of bits \ Lipschitz

average

* Theorem:f(x) + Lap(GS{/¢) is e-indistinguishable constant of f

— Noise generated from Laplace distribution
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Achieving Privacy

Theorem

If A(z) = f(x) + Lap( ) then A is e-indistinguishable.

Laplace distribution Lap(\) has density h(y) oc e

h(y+)AN(Y)

h(y) G
h(y+0) Sy

Sliding property of Lap (@)

Proof idea: A(x): blue curve
/

A(x'): red curve

= f(z) — f(2') < G5y

lylly
Y

for all y, 0
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What Differential Privacy Is Not

Impossible
* Suppose you know that | smoke
* Clinical study:“smoking and cancer correlated”
* You learn something about me
... whether or not my data were used
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What Differential Privacy Means

You learn (almost) the same things about me
whether or not my data are used

No matter what you know ahead of time

slide 68



Learning
today

—
=
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Privacy Concerns

* Training data is sensitive

— speech, photo images, written documents

* Users have no control over the learning objective

* Using trained networks requires users to share
their private data with service providers

slide 70



Possible Consequences

* Users’ data might be used in wrong context
— Compromises and data breaches
— Inference of sensitive information

— Training of intrusive models

* Holders of sensitive data cannot benefit from
large-scale deep learning because they may not
share or pool their datasets for training

— Biomedical researchers?

— Social scientists?

slide 71



: Sensitive
' Data

Deep
{ Learning

Revealed now,
but should be

private

Is private now,
but should be

revealed

slide 72
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Distributed Selective SGD (DSSGD)
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Selective SGD




Selective SGD

Share with others



download the 4 upload gradient of
latest values of selected parameters
most-updated -4) and add them to

parameters global parameters

e e e e e e e e o - -

local parameters and gradients

v 1

= DSSGD

local training dataset A rc h |te Ctu re

slide 76




download the 4 upload gradient of

latest values of selected parameters
most-updated @ and add them to
parameters global parameters
_________ : ::‘I:I - vy

‘| selected gradients

local parameters and gradients

vt
( SGD )

*

local training dataset

e e e e e e e e o - -

DSSGD
Architecture
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global parameters

‘—:-—\,.-_'

]

download the
latest values of
most-updated
parameters

T

upload gradient of
selected parameters
<) and add them to
global parameters

local parameters and gradients

'

T

C

SGD )

?

local training dataset

Architecture

e e e e e e e e o - -

|
—— T [= = B
] by D:DB mm | /|O BHo e8|
| | l' el ! gt 'l ll solectod parametens) ocied gradients “
E ) e s S p————— wp——
| [N |
O 0 !
. I |' i/ |l L
selected gradients | | | | T
| |
_! | || ccal parameiers anc gradients :: '| 8l BEramensrs anc gradents I
------------ [ |
------------- || * ’ |' || ‘ ’ |l
- ,: ( SGD pEL ,: ( SGD DL
| 4 1y 4
| |
| |
| |
| |
l' ll
| |

DSSGD
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local parameters and gradients

v 1

( SGD )

*

local training dataset

download the 4 upload gradient of
latest values of selected parameters
most-updated @ and add them to
parameters global parameters

DSSGD
Architecture
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Distributed Selective SGD

* Local training, global convergence
* High training stochasticity

* Less overfitting

slide 80



Evaluation Datasets

SVHN

| S
I 2 (2 ] 2
B EbE
BAE L
5Bk o] |
mrmw.m.m

nﬂ (N ’.L

S0
O ¢
Y
) 7
t G
g 7
13
5 &

Task: Find the digit in the image — 10 class classification
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Accuracy

(almost)
as good as
centralized
training

0.86 -

0.001 0.01 0.1 1
Parameter selection rate for upload (6,,)
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Privacy Properties

Participants’ datasets remain private
Full control over parameter selection
Known learning objective

Resulting model available to all parties
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Indirect Information Leakage
through gradient sharing

r ~ Alice’s data is'x |
. probably in the training
dataset

°
.
dataset |g

slide 84




Prevent Indirect Leakage

* Differentially private parameter selection and
gradient sharing

| perturb to-be-shard

.\’! gradient values

i R . | ——— . P ———

e

Pr{f(D) € O} < exp(e) - Pr{f(D’) € O}

e ———
'

\ o A

(including (excluding
Alice) 7 Alice)
[ ]
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Sparse Vector Technique

* Select a small fraction of (perturbed) gradients that are
above a given (perturbed) threshold

_____________________ _,

() ' > threshold ? ' > threshold ?

C. Dwork and A. Roth. The algorithmic foundations of differen tiaIIy priva te
differential privacy. Theoretical Computer Science, '

9(3-4):211-407, 2013. Qm parlsy .
slide 86




Federated Learning: Collaborative Machine

Learning without Centralized Training Data
Thursday, April 06, 2017

Currently being tested by
Google in Gboard on Android
(query suggestion model)

7N l N
Af\@ JFEEE —-c
/| \
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Compressed parameter updates

(not just raw gradient steps)
Each phone tr (\

ains
a local model /?., / {\
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